Ta có:
\(A=\frac{13^{15}+1}{13^{16}+1}\Rightarrow13A=\frac{13^{16}+13}{13^{16}+1}=\frac{13^{16}+1+12}{13^{16}+1}=1+\frac{12}{13^{16}+1}\)
\(B=\frac{13^{16}+1}{13^{17}+1}\Rightarrow13B=\frac{13^{17}+13}{13^{17}+1}=\frac{13^{17}+1+12}{13^{17}+1}=1+\frac{12}{13^{17}+1}\)
Ta thấy:
\(13^{16}+1< 13^{17}+1\)
\(\Rightarrow\frac{12}{13^{16}+1}>\frac{12}{13^{17}+1}\)
\(\Rightarrow1+\frac{12}{13^{16}+1}>1+\frac{12}{13^{17}+1}\)
hay \(A>B\)
Vậy \(A>B.\)
Ta có: \(\frac{a}{b}< \frac{a+c}{b+c}\)
=> \(B=\frac{13^{16}+1}{13^{17}+1}< \frac{13^{16}+1+12}{13^{17}+1+12}=\frac{13^{16}+13}{13^{17}+13}=\frac{13\left(13^{15}+1\right)}{13\left(13^{16}+1\right)}=\frac{13^{15}+1}{13^{16}+1}=A\)
Vậy: \(A>B\)