tìm max hoặc min của: A= 2/3 +21/(x+3y2)+5|x+5|+14
tìm Max hoặc Min của biểu thức:
D=21/|x-2|+3
E=1-x ²/x ²+5
\(D=\dfrac{21}{\left|x-2\right|+3}\le\dfrac{21}{3}=7\forall x\)
Dấu '=' xảy ra khi x=2
Tìm Max, Min của các biểu thức:
A= |4x-3|+|5y+7,5|+17,5
B= |x-2|+|x-6|+2017 (Min)
C= 2020-|x+1|-|y-2| biết x+y=5
D= 2/3 + 21/ (x+3y)2 +5|x+5|+14
E= 27-2x / 12-x; x thuộc Z (MAX)
Tìm min hoặc max
|x-3|+|x-5|+|x+2|-4
\(A=\left|x-3\right|+\left|5-x\right|+\left|x+2\right|-4\ge\left|x-3\right|+\left|5-x+x+2\right|-4\)
\(A\ge\left|x-3\right|+3\ge3\)
\(A_{min}=3\) khi \(x=3\)
Tìm min hoặc max của:
a) A=7/3*(x^2+1)
b) B= 72-12x/5-x
tìm max hoặc min `D= -10 - (x-3)² - |y-5|`
Ta có: \(\left\{{}\begin{matrix}\left(x-3\right)^2\ge0\forall x\\\left|y-5\right|\ge0\forall y\end{matrix}\right.\)
\(\Rightarrow\left(x-3\right)^2+\left|y-5\right|\ge0\forall x,y\)
\(\Rightarrow10+\left(x-3\right)^2+\left|y-5\right|\ge10\forall x,y\)
\(\Rightarrow D=-10-\left(x-3\right)^2-\left|y-5\right|\le-10\forall x,y\)
Dấu \("="\) xảy ra khi: \(\left\{{}\begin{matrix}x-3=0\\y-5=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=5\end{matrix}\right.\)
Vậy \(Max_D=-10\) khi \(x=3;y=5\).
Bài 1 : a) tìm min của A=(2x+1/3)^4-1
b)tìm max của B=-(4/9x-2/15)=2/7
Bài 2: a) tìm x biết (3x+3)^100+1 < hoặc = 0
b) tìm x biết (x-1)^x+2=(x-1)^x+4
Bài 3 : a)54^4 và 21^12
b )2^31 và 5^35
Tìm Max hoặc Min của các biểu thức sau:
a) A= | x - 5 | - | x - 7 |
b) B = | 125 - x | + | x - 65 |
Tìm min hoặc max của
a) A= 7/3*(x^2+1)
b) 72-12x/5-x
a) \(A=\dfrac{7}{3}\left(x^2+1\right)\)
Ta có:
\(x^2\ge0\forall x\\ \Rightarrow x^2+1\ge1\forall x\)
Để \(A=\dfrac{7}{3}\left(x^2+1\right)\) đạt GTNN thì \(x^2+1\) đạt GTNN
\(hay:x^2+1=1\)
Thay \(x^2+1=1\) vào \(A=\dfrac{7}{3}\left(x^2+1\right)\) ta có:
\(A=\dfrac{7}{3}.1\\ A=\dfrac{7}{3}\)
Vậy \(Max_A=\dfrac{7}{3}\) tại \(x=0\)
a/ \(A=\dfrac{7}{3}\left(x^2+1\right)\)
Ta có: \(x^2\ge0\forall x\)
\(\Rightarrow\left(x^2+1\right)\ge1\)
Dấu ''='' xảy ra \(\Leftrightarrow x=0\)
\(\Rightarrow Min_A=\dfrac{7}{3}\Leftrightarrow x=0\)
Vậy.................................................
b/ Để \(\dfrac{72-12x}{5-x}\) lớn nhất
\(\Rightarrow5-x\) nhỏ nhất
\(\Rightarrow...................\) tự lm nốt mk fai ik hok r`
tìm max hoặc min
A=-(x-7)2-888
B=8/3+ |2x-1|+|y-5|
C=(x+3)2+|2y-5|-232
D=21-|3x+5|-|y-1|-(8+z)
a: A=-(x-7)^2-888<=-888
Dấu = xảy ra khi x=7
b: \(B=\left|2x-1\right|+\left|y-5\right|+\dfrac{8}{3}>=\dfrac{8}{3}\)
Dấu = xảy ra khi x=1/2 và y=5
c: \(C=\left(x+3\right)^2+\left|2y-5\right|-232>=-232\)
Dấu = xảy ra khi x=-3 và y=5/2