Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
༺ミ𝒮σɱєσиє...彡༻
Xem chi tiết
Nguyễn Hoàng Minh
13 tháng 11 2021 lúc 15:23

\(A=\left(x^2-2x+1\right)+4=\left(x-1\right)^2+4\ge4\\ A_{min}=4\Leftrightarrow x=1\\ B=2\left(x^2-3x\right)=2\left(x^2-2\cdot\dfrac{3}{2}x+\dfrac{9}{4}\right)-\dfrac{9}{2}\\ B=2\left(x-\dfrac{3}{2}\right)^2-\dfrac{9}{2}\ge-\dfrac{9}{2}\\ B_{min}=-\dfrac{9}{2}\Leftrightarrow x=\dfrac{3}{2}\\ C=-\left(x^2-4x+4\right)+7=-\left(x-2\right)^2+7\le7\\ C_{max}=7\Leftrightarrow x=2\)

ILoveMath
13 tháng 11 2021 lúc 15:24

a,\(A=x^2-2x+5=\left(x^2-2x+1\right)+4=\left(x-1\right)^2+4\ge4\)

Dấu "=" \(\Leftrightarrow x=-1\)

b,\(B=2\left(x^2-3x\right)=2\left(x^2-3x+\dfrac{9}{4}\right)-\dfrac{9}{2}=2\left(x-\dfrac{3}{2}\right)^2-\dfrac{9}{2}\ge-\dfrac{9}{2}\)

Dấu "=" \(\Leftrightarrow x=\dfrac{3}{2}\)

c,\(=C=-\left(x^2-4x-3\right)=-\left[\left(x^2-4x+4\right)-7\right]=-\left(x-2\right)^2+7\le7\)

Dấu "=" \(\Leftrightarrow x=2\)

Pham Huy Bach
Xem chi tiết
Ngoc Anh Thai
11 tháng 4 2021 lúc 18:31

a) 

\(A=\dfrac{2x+3}{x-2}=\dfrac{2\left(x-2\right)+7}{x-2}=2+\dfrac{7}{x-2}\)

Vì x nguyên nên để A có giá trị nguyên thì \(\dfrac{7}{x-2}\) có giá trị nguyên

Khi đó x - 2 ∈ Ư(7) = {-7; -1; 1; 7}

   x-2     -7     -1     1      7
    x     -5      1     2      9

Vậy x ∈ {-5; 1; 2; 9}.

nguyen thi mai huong
Xem chi tiết
gấukoala
24 tháng 3 2020 lúc 17:00

a/ Vì lx-7l > hoặc =0 nên lx-7l-1>hoặc=-1

Vậy A nhỏ nhất=-1

=>lx-7l=0

=>x=7

b/Vì l2x+4l>0 nên -l2x+4l<0

nên -l2x+4l+3<3 

=> B lớn nhất =3

=>x=-2

Khách vãng lai đã xóa
ミ★Ƙαї★彡
19 tháng 7 2020 lúc 17:36

a, \(A=\left|x-7\right|\ge0\)

\(\Rightarrow\left|x-7\right|-1\ge-1\)

Dấu ''='' xảy ra <=> x - 7 = 0 <=> x = 7

Vậy minA là -1 tại x = 7

b, \(B=\left|2x+4\right|\ge0\)Mà \(-\left|2x+4\right|< 0\)

\(\Rightarrow-\left|2x+4\right|+3\ge3\)

Dấu ''='' xảy ra <=> 2x + 4 = 0 <=> 2x = -4 <=> x = -2 

Vậy maxB là 3 tại x = -2 

Khách vãng lai đã xóa
Rhider
Xem chi tiết
mình là hình thang hay h...
10 tháng 3 2022 lúc 11:20

bạn khùng đây là vật lý hỏ

Trang
Xem chi tiết
Nguyễn Văn Vinh
6 tháng 11 2016 lúc 20:50

bài 2

Ta có:

\(A=\left|x-102\right|+\left|2-x\right|\Rightarrow A\ge\left|x-102+2-x\right|=-100\Rightarrow GTNNcủaAlà-100\)đạt được khi \(\left|x-102\right|.\left|2-x\right|=0\)

Trường hợp 1: \(x-102>0\Rightarrow x>102\)

\(2-x>0\Rightarrow x< 2\)

\(\Rightarrow102< x< 2\left(loại\right)\)

Trường hợp 2:\(x-102< 0\Rightarrow x< 102\)

\(2-x< 0\Rightarrow x>2\)

\(\Rightarrow2< x< 102\left(nhận\right)\)

Vậy GTNN của A là -100 đạt được khi 2<x<102.

nguyen thi mai huong
Xem chi tiết
▄︻̷̿┻̿═━一   Perisong...
25 tháng 3 2020 lúc 13:38

a/ Để A nhỏ nhất thì |x-7| là nhỏ nhất

=> |x-7| = 0 

Vậy GTNN của A là : 0-1= -1 

Khách vãng lai đã xóa
Phạm Quỳnh Anh
Xem chi tiết
Laku
9 tháng 7 2021 lúc 10:04

undefined

Võ Phương Diễm
Xem chi tiết
Hoàng Tuấn Hùng
21 tháng 3 2020 lúc 20:31

Ta có

\(A=\frac{x^2+2x-1}{x^2-2x+3}\left(ĐKXĐ:\forall x\inℝ\right)\)

\(\Leftrightarrow A.\left(x^2-2x+3\right)=x^2+2x-1\)

\(\Leftrightarrow\left(A-1\right).x^2-2\left(A+1\right)x+3A+1=0\left(1\right)\)

Do \(\forall x\inℝ\)ta luôn có một giá trị A tương ứng nên phương trình (1) luôn có nghiệm

\(\Rightarrow\Delta^'_x\ge0\)

\(\Leftrightarrow\left(A+1\right)^2-\left(3A+1\right)\left(A-1\right)\ge0\)

\(\Leftrightarrow-2A^2+4A+2\ge0\)

\(\Leftrightarrow1-\sqrt{2}\le A\le1+\sqrt{2}\)

Nếu \(A=1-\sqrt{2}\)thì thay vào trên ta được \(x=1-\sqrt{2}\)

Nếu \(A=1+\sqrt{2}\)thì thay vào trên ta được 

Vậy \(\hept{\begin{cases}MinA=1-\sqrt{2}\Leftrightarrow x=1-\sqrt{2}\\MaxA=1+\sqrt{2}\Leftrightarrow x=1+\sqrt{2}\end{cases}}\)

Khách vãng lai đã xóa
nguyễn nam dũng
Xem chi tiết
Hoàng Phúc
9 tháng 7 2016 lúc 16:58

\(b,B\left(x\right)=x\left(x-3\right)-2\left(x+5\right)=x^2-3x-2x-10=x^2-5x-10\)

\(=x^2-\frac{5}{2}x-\frac{5}{2}x+\frac{25}{4}-\frac{25}{4}-10=x\left(x-\frac{5}{2}\right)-\frac{5}{2}\left(x-\frac{5}{2}\right)-\frac{65}{4}\)

\(=\left(x-\frac{5}{2}\right)^2-\frac{65}{4}\)

\(\left(x-\frac{5}{2}\right)^2\ge0=>\left(x-\frac{5}{2}\right)^2-\frac{65}{4}\ge-\frac{65}{4}\) (với mọi x)

Dấu "=" xảy ra \(< =>x-\frac{5}{2}=0< =>x=\frac{5}{2}\)

Vậy minB(x)=-65/4 khi x=5/2

\(c,C\left(x\right)=2x\left(x+1\right)-3x\left(x+1\right)=2x^2+2x-3x^2-3x=-x^2-x\)

\(=-\left(x^2+x\right)=-\left(x^2+x+1-1\right)=-\left(x^2+\frac{1}{2}x+\frac{1}{2}x+\frac{1}{4}+\frac{3}{4}-1\right)\)

\(=-\left[x\left(x+\frac{1}{2}\right)+\frac{1}{2}\left(x+\frac{1}{2}\right)-\frac{1}{4}\right]=-\left[\left(x+\frac{1}{2}\right)^2-\frac{1}{4}\right]=\frac{1}{4}-\left(x+\frac{1}{2}\right)^2\)

\(\left(x+\frac{1}{2}\right)^2\ge0=>\frac{1}{4}-\left(x+\frac{1}{2}\right)^2\le\frac{1}{4}\) (với mọi x)

Dấu  "=" xảy ra \(< =>x+\frac{1}{2}=0< =>x=-\frac{1}{2}\)

Vậy maxC(x)=1/4 khi x=-1/2

Hoàng Phúc
9 tháng 7 2016 lúc 16:52

\(A\left(x\right)=2x\left(x-1\right)-3\left(x-13\right)=2x^2-5x+39\)

\(=2\left(x^2-\frac{5}{2}x+\frac{39}{2}\right)=2\left(x^2-\frac{5}{4}x-\frac{5}{4}x+\frac{25}{16}-\frac{25}{16}+\frac{39}{2}\right)\)

\(=2\left[x\left(x-\frac{5}{4}\right)-\frac{5}{4}\left(x-\frac{5}{4}\right)\right]+\frac{287}{16}=2\left[\left(x-\frac{5}{4}\right)^2+\frac{287}{16}\right]=2\left(x-\frac{5}{4}\right)^2+\frac{287}{8}\)

\(2\left(x-\frac{5}{4}\right)^2\ge0=>2\left(x-\frac{5}{4}\right)^2+\frac{287}{8}\ge\frac{287}{8}>0\) với mọi x

=>A(x) vô nghiệm (đpcm)