y=kx+(m-2) (d1)
y=(5-kx+(m-4) (d2)
tìm m,k để d1 vuông góc với d2.
Tìm giá trị của k để 3 đường thẳng sau đồng quy tại một điểm trong mặt phẳng toạ độ:
a) y = 2x - 7 (d1); y = -x + 5 (d2); y = kx + 5 (d3)
b) y = kx - 7 (d1); y = 3x - 5 (d2); y = x - 1 (d3)
c) y = x - 7 (d1); y = kx - 3 (d2); y = 3x - 1 (d3)
a, ta có
(d1)=(d2)
2x-7=-x+5
\(\Leftrightarrow\)3x=12
\(\Leftrightarrow\)x=4
ta có
(d1)=(d3)
2x-7=kx+5
\(\Leftrightarrow\)2.4-7=k4+5
\(\Leftrightarrow\)k=-1
b, ta có
(d3)=(d2)
x-1=3x-5
\(\Leftrightarrow\)x=2
ta có
(d1)=(d3)
kx-7=x-1
\(\Leftrightarrow\)k2-7=2-1
\(\Leftrightarrow\)k=4
c, ta có
(d1)=(d3)
x-7=3x-1
\(\Leftrightarrow\)x=-3
ta có
(d1)=(d2)
x-7= kx-3
\(\Leftrightarrow\)-3-7=-3k-3
\(\Leftrightarrow\)k=\(\frac{7}{3}\)
Cho đường thẳng (d1): y = kx + 5. Tìm k để đường thẳng (d1) song song với đường thẳng (d2) biết rằng (d2) đi qua hai điểm A(1 ; 2) và B(-3 ; -2).
Gọi pt d2 có dạng \(y=ax+b\)
Do d2 qua A và B nên ta có:
\(\left\{{}\begin{matrix}a+b=2\\-3a+b=-2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=1\\b=1\end{matrix}\right.\) \(\Rightarrow d_2:y=x+1\)
Do \(d_1\) song song \(d_2\) nên chúng có cùng hệ số góc
\(\Rightarrow k=1\)
Cho đường thẳng (d1):y=2x+1, (d2) y=3, (d3):y=kx+5
a) Xác định tọa độ giao điểm A của 2 đường thẳng d1 và d2
b) Tìm m để 3 đường thẳng trên đồng quy
Cho 2 đường thẳng (d1):
y = m(x+2);(d2):y=(2m-3)x+2 Tìm m để:
a) (d1) và (d2) song song với nhau.
b) (d1) và (d2) trùng với nhau.
c) (d1) và (d2) vuông góc với nhau.
a) \(\left(d_1\right):y=mx+2m\)
\((d_1)\parallel (d_2)\) \(\Rightarrow\left\{{}\begin{matrix}m=2m-3\\2m\ne2\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}m=3\\m\ne1\end{matrix}\right.\Rightarrow m=3\)
b) \(\left(d_1\right)\equiv\left(d_2\right)\Rightarrow\left\{{}\begin{matrix}m=2m-3\\2m=2\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}m=3\\m=1\end{matrix}\right.\Rightarrow\) không có m thỏa
c) \(\left(d_1\right)\bot\left(d_2\right)\Rightarrow m.\left(2m-3\right)=-1\Rightarrow2m^2-3m+1=0\)
\(\Rightarrow\left(m-1\right)\left(2m-1\right)=0\Rightarrow\left[{}\begin{matrix}m=1\\m=\dfrac{1}{2}\end{matrix}\right.\)
Ta có: (d1): y=m(x+2)
nên y=mx+2m
a) Để (d1)//(d2) thì \(\left\{{}\begin{matrix}m=2m-3\\2m\ne2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m-2m=-3\\m\ne1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=3\\m\ne1\end{matrix}\right.\Leftrightarrow m=3\)
b) Để (d1) trùng với (d2) thì \(\left\{{}\begin{matrix}m=2m-3\\2m=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=3\\m=1\end{matrix}\right.\Leftrightarrow m\in\varnothing\)
cho 2 hàm só y=(2-m)x + 5 (d1) và y= ( m-4)x - 7 (d2) a) tìm điều kiện của m để d1 và d2 hàm số bậc nhất b) tìm điều kiện của m để d1 song song với d2 c) tìm điều kiện của m để d1 cắt d2
\(a,\Leftrightarrow\left\{{}\begin{matrix}2-m>0\\m-4>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m< 2\\m>4\end{matrix}\right.\Leftrightarrow m\in\varnothing\\ b,\Leftrightarrow2-m=m-4\Leftrightarrow m=3\\ c,\Leftrightarrow2-m\ne m-4\Leftrightarrow m\ne3\)
Tìm giá trị của k để ba đường thẳng đông quy
y=-2x+3 (d1)
y=2x-2 (d2)
y=kx+k-5 (d3)
Cho đường thẳng (d1): y=-x-1; (d2): y= x-5.
a) Tìm tọa độ giao điểm A của (d1) và (d2)
b) c/m(d1) vuông góc với (d2), Tính chu vi tam giác tạo bởi (d1), (d2) và trục Oy
a: Tọa độ A là nghiệm của hệ phương trình:
\(\left\{{}\begin{matrix}-x-1=x-5\\y=x-5\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}-2x=-4\\y=x-5\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=2\\y=2-5=-3\end{matrix}\right.\)
=>A(2;-3)
b: Vì \(a_1\cdot a_2=1\cdot\left(-1\right)=-1\)
nên (d1) vuông góc với (d2)
Gọi B,C lần lượt là giao điểm của (d1) với trục Oy, (d2) với trục Oy
Tọa độ B là:
\(\left\{{}\begin{matrix}x=0\\y=-x-1=-0-1=-1\end{matrix}\right.\)
=>B(0;-1)
Tọa độ C là:
\(\left\{{}\begin{matrix}x=0\\y=x-5=-5\end{matrix}\right.\)
=>C(0;-5)
B(0;-1); C(0;-5); A(2;-3)
\(BC=\sqrt{\left(-5+1\right)^2+\left(0-0\right)^2}=4\)
\(BA=\sqrt{\left(2-0\right)^2+\left(-3+1\right)^2}=2\sqrt{2}\)
\(AC=\sqrt{\left(2-0\right)^2+\left(-3+5\right)^2}=2\sqrt{2}\)
Chu vi tam giác ABC là:
\(4+2\sqrt{2}+2\sqrt{2}=4\sqrt{2}+4\)
Cho (d1) y= 4mx - ( m + 5 ) ; (d2) y= ( 3m^2 + 1)x + m^2 - 4
a) tìm m để đồ thị (d1) đi qua M(2;3)
b. CM khi m thay đổi thì d1 luôn đi qua điểm A cố định d2 đi qua B cố định
c. khoảng cách AB = ???
d. Tìm m để d1 // d2
e. Tìm m để d1 cắt d2 . tìm giao điểm khi m=2
a/
\(\Rightarrow3=4m.2-m-5\Leftrightarrow m=\dfrac{8}{5}\)
b/
Tọa độ A là \(A\left(x_0;y_0\right)\)
\(\Rightarrow y_0=4mx_0-m-5\forall m\)
\(\Leftrightarrow\left(4x_0-1\right)m-\left(y_0+5\right)=0\forall m\)
\(\Leftrightarrow\left\{{}\begin{matrix}4x_0-1=0\\y_0+5=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_0=\dfrac{1}{4}\\y_0=-5\end{matrix}\right.\)
=> d1 luân đi qua điểm A cố định \(A\left(\dfrac{1}{4};-5\right)\forall m\)
Tọa độ B là \(B\left(x_1;y_1\right)\)
\(\Rightarrow y_1=\left(3m^2+1\right)x_1+m^2-4\forall m\)
\(\Leftrightarrow3m^2x_1+x_1+m^2-4-y_1=0\forall m\)
\(\Leftrightarrow\left(3x_1+1\right)m^2+x_1-y_1-4=0\forall m\)
\(\Leftrightarrow\left\{{}\begin{matrix}3x_1+1=0\\x_1-y_1-4=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_1=-\dfrac{1}{3}\\y_1=-\dfrac{13}{3}\end{matrix}\right.\)
=> d2 luân đi qua điểm B cố định \(B\left(-\dfrac{1}{3};-\dfrac{13}{3}\right)\)
d/ d1//d2 khi
\(\left\{{}\begin{matrix}4m=3m^2+1\\-m-5\ne m^2-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}m_1=1\\m_2=\dfrac{1}{3}\end{matrix}\right.\\m^2+m+1\ne0\end{matrix}\right.\)
Ta có \(m^2+m+1>0\forall m\)
\(\Rightarrow\left[{}\begin{matrix}m_1=1\\m_2=\dfrac{1}{3}\end{matrix}\right.\)
e/
\(\Rightarrow4mx-\left(m+5\right)=\left(3m^2+1\right)x+m^2-4\) tìm m để phương trình có nghiệm
Tìm giao
\(\Rightarrow4mx-\left(m+5\right)=\left(3m^2+1\right)x+m^2-4\) khi m=2
Thay m=2 tìm x rồi thay vào d1 hoặc d2 để tìm y
Cho đường thẳng (d): y= (m-2)x+2m-3
a) vẽ đồ thị của hàm số khi m=1. Gọi đt đó là (d1)
b) Cho (d2): y= x-5. Tìm tọa độ giao điểm A của (d1) và (d2)
c) c/m(d1) vuông góc với (d2), Tính chu vi tam giác tạo bởi (d1), (d2) và trục Oy
Cho đường thẳng (d): y= (m-2)x+2m-3
a) vẽ đồ thị của hàm số khi m=1. Gọi đt đó là (d1)
b) Cho (d2): y= x-5. Tìm tọa độ giao điểm A của (d1) và (d2)
c) c/m(d1) vuông góc với (d2), Tính chu vi tam giác tạo bởi (d1), (d2) và trục Oy
a: Khi m=1 thì y=(1-2)x+2*1-3
\(\Leftrightarrow y=-x-1\)
(d1): y=-x-1
b: Tọa độ A là nghiệm của hệ phương trình sau:
\(\left\{{}\begin{matrix}-x-1=x-5\\y=x-5\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}-2x=-4\\y=x-5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=2-5=-3\end{matrix}\right.\)
c: \(a_1\cdot a_2=1\cdot\left(-1\right)=-1\)
=>\(\left(d1\right)\perp\left(d2\right)\)