tìm GTLN của x - x2 +1.
cần gấp ạ.
Tìm GTLN của: M= -x2-4x+20
Tìm GTNN của:N= a2+4b2+4a-b-10
Tìm GTNN của:P=5a2+10a-8
(Mình cần gấp ạ)
a) Ta có: \(M=-x^2-4x+20\)
\(=-\left(x^2+4x-20\right)\)
\(=-\left(x^2+4x+4-24\right)\)
\(=-\left(x+2\right)^2+24\le24\forall x\)
Dấu '=' xảy ra khi x=-2
A=(-x2+x-11)/(x2-2*x+1)
tìm gtln,gtnn của biểu thức giúp e với ạ
1.Tìm GTNN của Bthức : B= 4x2- 6x+1 : (x-2)2 với x ≠ 2
2. Tìm GTLN của Bthức: C= x2 + 4x - 14 : x2 -2x +1 với x≠ 1
giúp mình với ạ, mình cảm ơn nhiều ạ
1.
Đặt \(x-2=t\ne0\Rightarrow x=t+2\)
\(B=\dfrac{4\left(t+2\right)^2-6\left(t+2\right)+1}{t^2}=\dfrac{4t^2+10t+5}{t^2}=\dfrac{5}{t^2}+\dfrac{2}{t}+4=5\left(\dfrac{1}{t}+\dfrac{1}{5}\right)^2+\dfrac{19}{5}\ge\dfrac{19}{5}\)
\(B_{min}=\dfrac{19}{5}\) khi \(t=-5\) hay \(x=-3\)
2.
Đặt \(x-1=t\ne0\Rightarrow x=t+1\)
\(C=\dfrac{\left(t+1\right)^2+4\left(t+1\right)-14}{t^2}=\dfrac{t^2+6t-9}{t^2}=-\dfrac{9}{t^2}+\dfrac{6}{t}+1=-\left(\dfrac{3}{t}-1\right)^2+2\le2\)
\(C_{max}=2\) khi \(t=3\) hay \(x=4\)
Tìm GTLN của biểu thức: 2-\(\sqrt{x-1}\)- x.
Mình cần gấp ạ !! <3
gọi biểu thức là a
ta có:
x \(\ge\)0
\(\sqrt{x}-1\) \(\le\)1
=> 2 - \(\sqrt{x}-1-x\)\(\le\)2
GTLN của a là 2. dấu = xảy ra khi:
\(\sqrt{x-1}-x\)= 0
=> x = 0
Điều kiện \(\sqrt{x-1}\ge0\Leftrightarrow x\ge1\)
Ta có
\(\sqrt{x-1}\ge0\Rightarrow-\sqrt{x-1}\le0\)
Ta lại có
\(x\ge1\Leftrightarrow-x\le-1\)
Từ đó ta có
\(2-\sqrt{x-1}-x\le2-0-1=1\)
Vậy nó đạt GTLN là 1 khi x = 1
Tìm số nguyên x để x2 + x + 1 là bội của x-2 mình cần gấp ạ
x2 + x + 1 là bội của x - 2
⇔ x2 + x + 1 ⋮ x - 2
x2 - 4 + x - 2 + 7 ⋮ x - 2
(x2 - 2x) + ( 2x - 4) + ( x - 2) + 7 ⋮ x - 2
x( x - 2) + 2 ( x - 2) + ( x - 2) + 7 ⋮ x - 2
(x-2)( x + 2) + (x -2) + 7 ⋮ x - 2
⇔ 7 ⋮ x - 2
x - 2 \(\in\) { -7; -1; 1; 7}
Lập bảng
x- 2 | -7 | -1 | 1 | 7 |
x | -5 | 1 | 3 | 9 |
Vậy x \(\in\) { -5; 1; 3; 9}
Cách 2 : nhanh hơn nếu dùng bezout
Theo bezout ta có : F(x) = x2 + x + 1 ⋮ x - 2⇔ F(2) ⋮ x - 2
⇔ 22 + 2 + 1 ⋮ x - 2 ⇔ 7 ⋮ x - 2; ⇒ x - 2 \(\in\) { -7; -1; 1;7}
x ϵ { -5; 1; 3; 9}
a. tìm gtnn của
A= (x2-2x)2+10.(x2-2x)2+39
b. tìm gtln của
B=4x-2x2+1
nhanh giúp mình với ạ, mình đang gấp
b: Ta có: \(B=-2x^2+4x+1\)
\(=-2\left(x^2-2x-\dfrac{1}{2}\right)\)
\(=-2\left(x^2-2x+1-\dfrac{3}{2}\right)\)
\(=-2\left(x-1\right)^2+3\le3\forall x\)
Dấu '=' xảy ra khi x=1
1. Tìm GTNN của biểu thức: A= với
2. Tìm GTLN của biểu thức B= với
giúp mình với ạ, đg cần gấp ạ
Câu này em đã hỏi rồi
Tìm GTNN của biêu thức D=(x+1).(x2 - 4).(x+5)+2014
giúp mình với ạ, mình đang cần gấp!
Lời giải:
$D=(x+1)(x^2-4)(x+5)+2014$
$=(x+1)(x+2)(x-2)(x+5)+2014$
$=(x^2+3x+2)(x^2+3x-10)+2014$
$=t(t-12)+2014$ (đặt $x^2+3x+2=t$)
$=t^2-12t+2014=(t-6)^2+1978$
$=(x^2+3x-4)^2+1978\geq 1978$
Vậy gtnn của biểu thức là $1978$. Giá trị này đạt tại $x^2+3x-4=0$
$\Leftrightarrow x=1$ hoặc $x=-4$
Bài 1 ( Cho đa thức A = 4n3 – 2n2 – 6n + 5 và đa thức B = 2n – 1.
Tìm giá trị nguyên của n để đa thức A chia hết cho đa thức B.
Bài 2
Tìm GTLN hoặc GTNN của biểu thức : Q = - x2 – y2 – 4x + 2y + 2
Các bạn giúp mik dc ko mik dag cần gấp ạ
\(A=2n^2\left(2n-1\right)-3\left(2n-1\right)+2=\left(2n^2-3\right)\left(2n-1\right)+2\)
Do \(\left(2n^2-3\right)\left(2n-1\right)⋮2n-1\)
\(\Rightarrow2⋮2n-1\)
\(\Rightarrow2n-1=Ư\left(2\right)\)
Mà 2n-1 luôn lẻ \(\Rightarrow2n-1=\left\{-1;1\right\}\)
\(\Rightarrow n=\left\{0;1\right\}\)
2.
\(Q=-\left(x^2+4x+4\right)-\left(y^2-2y+1\right)+7\)
\(Q=-\left(x+2\right)^2-\left(y-1\right)^2+7\le7\)
\(Q_{max}=7\) khi \(\left(x;y\right)=\left(-2;1\right)\)
Tìm GTNN của B=(x2+x)2+4(x2+x)-12
Mọi ng giúp em với em đang cần gấp ạ. Em cảm ơn
\(B=\left(x^2+x\right)^2+4\left(x^2+x\right)+4-16=\left(x^2+x+2\right)^2-16\ge-16\)
Dấu \("="\Leftrightarrow x^2+x+2=0\Leftrightarrow x\in\varnothing\left(x^2+x+2>0\right)\)
Vậy dấu \("="\) ko xảy ra nên sẽ ko tính đc GTNN
\(B=\left(x^2+x\right)^2+4\left(x^2+x^2\right)-12\)
\(=\left(x^2+x\right)^2+4\left(x^2+x\right)+4-16\)
\(=\left(x^2+x+2\right)^2-16\)
\(=\left[\left(x+\dfrac{1}{2}\right)^2+\dfrac{7}{4}\right]^2-16\)
Do \(\left(x+\dfrac{1}{2}\right)^2\ge0;\forall x\Rightarrow\left(x+\dfrac{1}{2}\right)^2+\dfrac{7}{4}\ge\dfrac{7}{4}\)
\(\Rightarrow B\ge\left(\dfrac{7}{4}\right)^2-16=-\dfrac{207}{16}\)
\(B_{min}=-\dfrac{207}{16}\) khi \(x=-\dfrac{1}{2}\)