Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lê Bảo Ngọc
Xem chi tiết
Nguyễn Hoàng Minh
22 tháng 11 2021 lúc 14:57

\(a,\dfrac{x^2+x+2}{\sqrt{x^2+x+1}}=\dfrac{x^2+x+1+1}{\sqrt{x^2+x+1}}=\sqrt{x^2+x+1}+\dfrac{1}{\sqrt{x^2+x+1}}\left(1\right)\)

Áp dụng BĐT cosi: \(\left(1\right)\ge2\sqrt{\sqrt{x^2+x+1}\cdot\dfrac{1}{\sqrt{x^2+x+1}}}=2\)

Dấu \("="\Leftrightarrow x^2+x+1=1\Leftrightarrow x^2+x=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\)

nga thanh
Xem chi tiết
Nguyễn Thanh Hằng
1 tháng 1 2020 lúc 23:04

Áp dụng BĐT Bunhiacopxki ta có :

\(\left(3\sqrt{x-1}+4\sqrt{5-x}\right)^2\le\left(3^2+4^2\right)\left(x-1+5-x\right)\)

\(\Leftrightarrow\left(3\sqrt{x-1}+4\sqrt{5-x}\right)^2\le100\)

\(\Leftrightarrow f\left(x\right)\le10\)

Dấu "=" xảy ra :

\(\Leftrightarrow\frac{\sqrt{x-1}}{3}=\frac{\sqrt{5-x}}{4}\)

Vậy...

Khách vãng lai đã xóa
Trần Mai Thanh
Xem chi tiết
Nguyễn Hoàng Anh
Xem chi tiết
Nguyễn Lê Phước Thịnh
3 tháng 12 2023 lúc 20:41

a: \(f\left(x\right)=2x^2-7x+9\)

=>\(f'\left(x\right)=2\cdot2x-7=4x-7\)

Đặt f'(x)=0

=>\(4x-7=0\)

=>\(x=\dfrac{7}{4}\)

\(f\left(\dfrac{7}{4}\right)=2\cdot\left(\dfrac{7}{4}\right)^2-7\cdot\dfrac{7}{4}+9=\dfrac{23}{8}\)

\(f\left(-1\right)=2\left(-1\right)^2-7\cdot\left(-1\right)+9=18\)

\(f\left(4\right)=2\cdot4^2-7\cdot4+9=13\)

Vì \(f\left(\dfrac{7}{4}\right)< f\left(4\right)< f\left(-1\right)\)

nên \(f\left(x\right)_{max\left[-1;4\right]}=18;f\left(x\right)_{min\left[-1;4\right]}=\dfrac{23}{8}\)

b: \(f\left(x\right)=x^2+5x+3\)

=>\(f'\left(x\right)=2x+5\)

f'(x)=0

=>2x+5=0

=>2x=-5

=>\(x=-\dfrac{5}{2}\)

\(f\left(-\dfrac{5}{2}\right)=\left(-\dfrac{5}{2}\right)^2+5\cdot\dfrac{-5}{2}+3=\dfrac{25}{4}-\dfrac{25}{2}+3=-\dfrac{13}{4}\)

\(f\left(2\right)=2^2+5\cdot2+3=4+10+3=17\)

\(f\left(6\right)=6^2+5\cdot6+3=69\)

Vậy: \(f\left(x\right)_{max\left[2;6\right]}=69;f\left(x\right)_{min\left[2;6\right]}=-\dfrac{13}{4}\)

dia fic
Xem chi tiết
Trần Minh Hoàng
2 tháng 1 2021 lúc 17:30

Áp dụng bất đẳng thức AM - GM:

\(\sqrt{\left(x^2-15\right)\left(x-3\right)}\le\dfrac{x^2-15+x-3}{2}=\dfrac{x^2+x-18}{2};\sqrt{x^2-15}\le\dfrac{x^2-15+1}{2}=\dfrac{x^2-14}{2};\sqrt{x-3}\le\dfrac{x-3+1}{2}=\dfrac{x-2}{2}\).

Do đó \(F\ge x^2+x-\dfrac{x^2+x-18}{2}-\dfrac{x^2-14}{2}-\dfrac{x-2}{2}-38=-21\).

Đẳng thức xảy ra khi x = 4.

Vậy...

Đinh Anh Thư
Xem chi tiết
Kamato Heiji
Xem chi tiết
Qasalt
Xem chi tiết
Phạm Tuấn Kiệt
Xem chi tiết
Bùi Lê Anh Khoa
3 tháng 3 2017 lúc 22:21

\(F\)=5 ; \(I\)=91

Hoàng Phúc
7 tháng 3 2017 lúc 15:01

đặt |3x-5|= y ,ĐK : y >/ 0 

F=y2-6y+10 đến đây đơn giản

ý sau khai triển tử của I rồi rút gọn được I=10x+40/x+41 >/ 2.20+41=81 (áp dụng bđt AM-GM)