Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Văn Thắng Hồ
Xem chi tiết
Trịnh Ánh Ngọc
23 tháng 3 2020 lúc 14:27

x2-2(m+1)x+m=0

Giải

\(\Delta=b^2-4ac\)

= (-2m-2)2-4.1.m

= 4m2+8m+4-4m

= 4m2+4m+1+3

= (2m+1)2+3

Do (2m+1)2 \(\ge0\) nên (2m+1)2+3 luôn luôn lớn hơn 0 với mọi m

\(\Rightarrow\) Phương trình có hai nghiệm phân biệt.

Ta có: \(\frac{2x_1-1}{x_2}+\frac{2x_2-1}{x_1}=x_1x_2+\frac{3}{x_1x_2}\)

\(\Leftrightarrow\frac{x_1\left(2x_1-1\right)}{x_1x_2}+\frac{x_2\left(2x_2-1\right)}{x_1x_2}=\frac{\left(x_1x_2\right)^2}{x_1x_2}+\frac{3}{x_1x_2}\)

\(\Leftrightarrow2x_1^2-x_1+2x_2^2-x_2=\left(x_1x_2\right)^2+3\)

\(\Leftrightarrow2\left(x_1^2+x_2^2\right)-\left(x_1+x_2\right)=\left(x_1x_2\right)^2+3\)

\(\left(x_1^2+x_2^2\right)=S^2-2P\) ; \(\left(x_1+x_2\right)=S\) ; \(\left(x_1x_2\right)^2=P^2\)

\(\Rightarrow2\left(S^2-2P\right)-S-P^2-3=0\)

\(\Leftrightarrow2S^2-4P-S-P^2-3=0\) \(\left(S=-\frac{b}{a};P=\frac{c}{a}\right)\)

\(\Leftrightarrow2\left(-\frac{-2m-2}{1}\right)^2-4\left(\frac{m}{1}\right)-\left(-\frac{-2m-2}{1}\right)-\left(\frac{m}{1}\right)^2-3=0\)

\(\Leftrightarrow2\left(2m+2\right)^2-4m-2m-2-m^2-3=0\)

\(\Leftrightarrow8m^2+16m+8-4m-2m-2-m^2-3=0\)

\(\Leftrightarrow7m^2+10m+3=0\)

\(\Leftrightarrow\left[{}\begin{matrix}m_1=\frac{-3}{7}\\m_2=-1\end{matrix}\right.\)

Vậy với \(\left[{}\begin{matrix}m_1=\frac{-3}{7}\\m_2=-1\end{matrix}\right.\) thì phương trình có hai nghiệm phân biệt thỏa mãn yêu cầu đề bài.

CHÚC BẠN HỌC TỐT!

Khách vãng lai đã xóa
Hải Yến Lê
Xem chi tiết
Nguyễn Lê Phước Thịnh
16 tháng 7 2021 lúc 21:09

Bài 2: 

Ta có: \(\text{Δ}=\left(2m+2\right)^2-4\cdot\left(m^2+4m+3\right)\)

\(=4m^2+8m+4-4m^2-16m-12\)

\(=-8m-8\)

Để phương trình có hai nghiệm phân biệt thì Δ>0

hay m<-1

Áp dụng hệ thức Vi-et, ta được:

\(\left\{{}\begin{matrix}x_1+x_2=-2m-2\\x_1x_2=m^2+4m+3\end{matrix}\right.\)

Ta có: \(2x_1+2x_2-x_1x_2+7=0\)

\(\Leftrightarrow2\left(x_1+x_2\right)-x_1x_2+7=0\)

\(\Leftrightarrow2\cdot\left(-2m-2\right)-m^2-4m-3+7=0\)

\(\Leftrightarrow-4m-4-m^2-4m+4=0\)

\(\Leftrightarrow m\left(m+8\right)=0\)

\(\Leftrightarrow m=-8\)

 

Lê Thu Dương
16 tháng 7 2021 lúc 21:12

Ta có: \(\Delta'=m^2+2m+1-m^2-4m-3=-2m-2\)

Để PT có 2 nghiệm thì \(-2m-2\ge0\Leftrightarrow m\le-1\)

Theo viet \(\left\{{}\begin{matrix}x_1+x_2=-2m-2\\x_2x_2=m^2+4m+3\end{matrix}\right.\)

theo bài

\(2x_1+2x_2-x_1x_2+7=0\)

\(\Leftrightarrow2\left(x_1+x_2\right)-x_1x_2+7=0\)

Thay số:

\(2\left(-2m-2\right)-m^2-4m-3+7=0\)

\(\Leftrightarrow-m^2-8m=0\)

\(\Leftrightarrow\left[{}\begin{matrix}m=-8\\m=0\left(loai\right)\end{matrix}\right.\)

Vậy ...

Chúc bạn học tốt

Chii Phương
Xem chi tiết
Hương Đoàn
Xem chi tiết
zZz Cool Kid_new zZz
Xem chi tiết
Incursion_03
2 tháng 7 2019 lúc 15:46

Theo Vi-ét cho 3 số (chứng minh bằng hệ số bất định)

\(\hept{\begin{cases}x_1+x_2+x_3=0\\x_1x_2+x_2x_3+x_1x_3=-3\\x_1x_2x_3=-1\end{cases}}\)

\(A=\frac{1+2x_1}{1+x_1}+\frac{1+2x_2}{1+x_2}+\frac{1+2x_3}{1+x_3}\)

   \(=3+\frac{x_1}{1+x_1}+\frac{x_2}{1+x_2}+\frac{x_3}{1+x_3}\)

   \(=3+\frac{x_1\left(1+x_2\right)\left(1+x_3\right)+x_2\left(1+x_1\right)\left(1+x_3\right)+x_3\left(1+x_1\right)\left(1+x_2\right)}{\left(1+x_1\right)\left(1+x_2\right)\left(1+x_3\right)}\)

    \(=3+\frac{x_1\left(1+x_2+x_3+x_2x_3\right)+x_2\left(1+x_1+x_3+x_1x_3\right)+x_3\left(1+x_1+x_2+x_1x_2\right)}{\left(1+x_1+x_2+x_1x_2\right)\left(1+x_3\right)}\)

    \(=3+\frac{\left(x_1+x_2+x_3\right)+2\left(x_1x_2+x_2x_3+x_3x_1\right)+3x_1x_2x_3}{1+x_1+x_2+x_3+x_1x_2+x_1x_3+x_2x_3+x_1.x_2.x_3}\)

   \(=3+\frac{0+2.\left(-3\right)+3.\left(-1\right)}{1+0-3-1}\)

   \(=6\)

Phùng Minh Quân
2 tháng 7 2019 lúc 15:48

Do x1 là một nghiệm của đa thức f(x) nên ta có: \(x_1^3-3x_1+1=0\)

\(\Leftrightarrow\)\(\left(x_1+1\right)\left(x_1^2-x_1+1\right)=3x_1\)\(\Leftrightarrow\)\(x_1+1=\frac{3x_1}{x_1^2-x_1+1}\)

Có: \(A==\frac{1+2x_1}{1+x_1}+\frac{1+2x_2}{1+x_2}+\frac{1+2x_3}{1+x_3}=3+\left(\frac{x_1}{1+x_1}+\frac{x_2}{1+x_2}+\frac{x_3}{1+x_3}\right)\)

\(A=3+\left(\frac{x_1\left(x_1^2-x_1+1\right)}{3x_1}+\frac{x_2\left(x^2_2-x_2+1\right)}{3x_2}+\frac{x_3\left(x_3^2-x_3+1\right)}{3x_3}\right)\)

\(A=3+\frac{\left(x_1^2+x_2^2+x_3^2\right)-\left(x_1+x_2+x_3\right)+3}{3}\)

\(A=3+\frac{\left(x_1+x_2+x_3\right)^2-2\left(x_1x_2+x_2x_3+x_3x_1\right)-\left(x_1+x_2+x_3\right)+3}{3}\)

Đến đây theo Vi-et bậc 3 

\(\hept{\begin{cases}x_1+x_2+x_3=0\\x_1x_2+x_2x_3+x_3x_1=-3\end{cases}}\)

Dương Phạm
2 tháng 7 2019 lúc 15:53

Tính toán nhầm đâu đó roài

Lizy
Xem chi tiết
Vy Khang
Xem chi tiết
Nguyễn Trung Dũng
Xem chi tiết
Arima Kousei
30 tháng 4 2018 lúc 9:03

\(A=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2014}}\)

\(\Rightarrow3A=3+1+\frac{1}{3}+...+\frac{1}{3^{2013}}\)

\(\Rightarrow3A-A\)=  \(\left(3+1+...+\frac{1}{3^{2013}}\right)-\left(1+\frac{1}{3}+...+\frac{1}{3^{2014}}\right)\)

\(\Rightarrow2A=3-\frac{1}{3^{2014}}\)

\(\Rightarrow A=\frac{3-\frac{1}{3^{2014}}}{2}\)

\(\Rightarrow A=\frac{3}{2}-\frac{\frac{1}{3^{2014}}}{2}< \frac{3}{2}\)

Vậy  \(A< \frac{3}{2}\)

Chúc bạn học tốt !!! 

duong minh duc
Xem chi tiết