x2-2(m+1)x+m=0
Giải
\(\Delta=b^2-4ac\)
= (-2m-2)2-4.1.m
= 4m2+8m+4-4m
= 4m2+4m+1+3
= (2m+1)2+3
Do (2m+1)2 \(\ge0\) nên (2m+1)2+3 luôn luôn lớn hơn 0 với mọi m
\(\Rightarrow\) Phương trình có hai nghiệm phân biệt.
Ta có: \(\frac{2x_1-1}{x_2}+\frac{2x_2-1}{x_1}=x_1x_2+\frac{3}{x_1x_2}\)
\(\Leftrightarrow\frac{x_1\left(2x_1-1\right)}{x_1x_2}+\frac{x_2\left(2x_2-1\right)}{x_1x_2}=\frac{\left(x_1x_2\right)^2}{x_1x_2}+\frac{3}{x_1x_2}\)
\(\Leftrightarrow2x_1^2-x_1+2x_2^2-x_2=\left(x_1x_2\right)^2+3\)
\(\Leftrightarrow2\left(x_1^2+x_2^2\right)-\left(x_1+x_2\right)=\left(x_1x_2\right)^2+3\)
Mà \(\left(x_1^2+x_2^2\right)=S^2-2P\) ; \(\left(x_1+x_2\right)=S\) ; \(\left(x_1x_2\right)^2=P^2\)
\(\Rightarrow2\left(S^2-2P\right)-S-P^2-3=0\)
\(\Leftrightarrow2S^2-4P-S-P^2-3=0\) \(\left(S=-\frac{b}{a};P=\frac{c}{a}\right)\)
\(\Leftrightarrow2\left(-\frac{-2m-2}{1}\right)^2-4\left(\frac{m}{1}\right)-\left(-\frac{-2m-2}{1}\right)-\left(\frac{m}{1}\right)^2-3=0\)
\(\Leftrightarrow2\left(2m+2\right)^2-4m-2m-2-m^2-3=0\)
\(\Leftrightarrow8m^2+16m+8-4m-2m-2-m^2-3=0\)
\(\Leftrightarrow7m^2+10m+3=0\)
\(\Leftrightarrow\left[{}\begin{matrix}m_1=\frac{-3}{7}\\m_2=-1\end{matrix}\right.\)
Vậy với \(\left[{}\begin{matrix}m_1=\frac{-3}{7}\\m_2=-1\end{matrix}\right.\) thì phương trình có hai nghiệm phân biệt thỏa mãn yêu cầu đề bài.
CHÚC BẠN HỌC TỐT!