\(\Leftrightarrow\left(x-1\right)\left(x+5\right)\left(x+1\right)\left(x+3\right)=m\)
\(\Leftrightarrow\left(x^2+4x-5\right)\left(x^2+4x+3\right)=m\)
Đặt \(x^2+4x-5=t\ge-9\)
\(\Rightarrow t\left(t+8\right)-m=0\Leftrightarrow t^2+8t-m=0\) (1)
Để (1) có 2 nghiệm pb thỏa mãn \(t>-9\Rightarrow-16< m< 9\)
Gọi \(x_1;x_2\) là 2 nghiệm của \(x^2+4x-5-t_1=0\) ; \(x_3;x_4\) là 2 nghiệm của \(x^2+4x-5-t_2=0\)
\(\Rightarrow\left\{{}\begin{matrix}x_1+x_2=-4\\x_1x_2=-t_1-5\end{matrix}\right.\) và \(\left\{{}\begin{matrix}x_3+x_4=-4\\x_3x_4=-t_2-5\end{matrix}\right.\)
Ta cũng có \(\left\{{}\begin{matrix}t_1+t_2=-8\\t_1t_2=-m\end{matrix}\right.\)
\(\frac{x_1+x_2}{x_1x_2}+\frac{x_3+x_4}{x_3x_4}=-1\Leftrightarrow\frac{-4}{-t_1-5}+\frac{-4}{-t_2-5}=-1\)
\(\Leftrightarrow4\left(t_1+t_2\right)+40=-t_1t_2-5\left(t_1+t_2\right)-25\)
\(\Leftrightarrow t_1t_2+9\left(t_1+t_2\right)+65=0\)
\(\Leftrightarrow-m-72+65=0\Rightarrow m=-7\) (thỏa mãn)