Violympic toán 9

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
𝓓𝓾𝔂 𝓐𝓷𝓱

Gọi \(x_1;x_2;x_3;x_4\) là các nghiệm của phương trình: \(\left(x+1\right)\left(x+3\right)\left(x+5\right)\left(x+7\right)=1\)

Tính \(x_1\cdot x_2\cdot x_3\cdot x_4\)

Nguyễn Việt Lâm
4 tháng 5 2020 lúc 20:12

\(\left(x+1\right)\left(x+7\right)\left(x+3\right)\left(x+5\right)-1=0\)

\(\Leftrightarrow\left(x^2+8x+7\right)\left(x^2+8x+15\right)-1=0\)

Đặt \(x^2+8x+7=t\) (1)

\(t\left(t+8\right)-1=0\)

\(\Leftrightarrow t^2+8t-1=0\)

Do \(ac< 0\) nên pt luôn có 2 nghiệm pb: \(\left\{{}\begin{matrix}t_1+t_2=8\\t_1t_2=-1\end{matrix}\right.\)

- Với nghiệm \(t_1\) thay vào (1) ta có:

\(x^2+8x+7-t_1=0\)

Theo Viet, pt này có 2 nghiệm thỏa: \(x_1x_2=7-t_1\)

Với nghiệm \(t_2\) ta có: \(x^2+8x+7-t_2=0\)

Pt này có 2 nghiệm thỏa Viet: \(x_3x_4=7-t_2\)

Do đó: \(x_1x_2x_3x_4=\left(7-t_1\right)\left(7-t_2\right)\)

\(=49-7\left(t_1+t_2\right)+t_1t_2=49-7.8-1=-8\)


Các câu hỏi tương tự
Hoàng Vy Oanh
Xem chi tiết
dam thu a
Xem chi tiết
Nguyễn Huy Đạt
Xem chi tiết
Phạm Minh Quang
Xem chi tiết
dam thu a
Xem chi tiết
abcd
Xem chi tiết
Đừng gọi tôi là Jung Hae...
Xem chi tiết
Núi non tình yêu thuần k...
Xem chi tiết
Ánh Dương
Xem chi tiết