\(\Delta=\left(-2\left(m+1\right)\right)^2-4\left(m^2-1\right)\)
\(=4\left(m^2+2m+1\right)-4m^2+4\)
\(=4m^2+8m+4-4m+4\)
\(=8m+8\)
Để pt có no thì \(\Delta\ge0\Leftrightarrow m\ge-1\)
Theo Vi-ét: \(\left\{{}\begin{matrix}x_1+x_2=2m+1\\x_1x_2=m^2-1\end{matrix}\right.\)
Ta có: \(x_1+x_2+x_1x_2=1\)
\(\Leftrightarrow2m+1+m^2-1-1=0\)
\(\Leftrightarrow m^2+2m-1=0\)
Giải pt ta được: \(\left[{}\begin{matrix}m=-1+\sqrt{2}\left(tm\right)\\m=-1-\sqrt{2}\left(ktm\right)\end{matrix}\right.\)
Vậy..