Tìm tập xác định của hàm số sau: \(y=f\left(x\right)=\sqrt{x\left(1-x\right)}+\sqrt{2x-1}\)
Tìm m để các hàm số sau có tập xác định là R (hay luôn xác định trên R):
a. \(y=f\left(x\right)=\dfrac{3x+1}{x^2+2\left(m-1\right)x+m^2+3m+5}\)
b. \(y=f\left(x\right)=\sqrt{x^2+2\left(m-1\right)x+m^2+m-6}\)
c. \(y=f\left(x\right)=\dfrac{3x+5}{\sqrt{x^2-2\left(m+3\right)x+m+9}}\)
a.
\(\Leftrightarrow x^2+2\left(m-1\right)x+m^2+3m+5\ne0\) ; \(\forall x\)
\(\Leftrightarrow\Delta'=\left(m-1\right)^2-\left(m^2+3m+5\right)< 0\)
\(\Leftrightarrow-5m-4< 0\)
\(\Leftrightarrow m>-\dfrac{4}{5}\)
b.
\(\Leftrightarrow x^2+2\left(m-1\right)x+m^2+m-6\ge0\) ;\(\forall x\)
\(\Leftrightarrow\Delta'=\left(m-1\right)^2-\left(m^2+m-6\right)\le0\)
\(\Leftrightarrow-3m+7\le0\)
\(\Rightarrow m\ge\dfrac{7}{3}\)
c.
\(x^2-2\left(m+3\right)x+m+9>0\) ;\(\forall x\)
\(\Leftrightarrow\Delta'=\left(m+3\right)^2-\left(m+9\right)< 0\)
\(\Leftrightarrow m^2+5m< 0\Rightarrow-5< m< 0\)
Tìm Tập xác định của các hàm số sau:
\(d.y=\dfrac{2x-1}{\sqrt{x\left|x\right|-4}}\\ e.y=\dfrac{x^2+2x+3}{\left|x^2-2x\right|+\left|x-1\right|}\\ f.y=\dfrac{\sqrt{x+2}}{x\left|x\right|+4}\\ g.y=\dfrac{\sqrt{x\left|x\right|+4}}{x}\)
d.
ĐKXĐ: \(x\left|x\right|-4>0\)
\(\Leftrightarrow x\left|x\right|>4\)
\(\Leftrightarrow\left\{{}\begin{matrix}x>0\\x^2>4\end{matrix}\right.\) \(\Leftrightarrow x>2\)
e.
ĐKXĐ: \(\left|x^2-2x\right|+\left|x-1\right|\ne0\)
Ta có:
\(\left|x^2-2x\right|+\left|x-1\right|=0\Leftrightarrow\left\{{}\begin{matrix}x^2-2x=0\\x-1=0\end{matrix}\right.\) (ko tồn tại x thỏa mãn)
\(\Rightarrow\) Hàm xác định với mọi x hay \(D=R\)
f.
ĐKXĐ: \(\left\{{}\begin{matrix}x+2\ge0\\x\left|x\right|+4\ne0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-2\\x\left|x\right|+4\ne0\end{matrix}\right.\)
Xét \(x\left|x\right|+4=0\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge0\\x^2+4=0\left(vn\right)\end{matrix}\right.\\\left\{{}\begin{matrix}x< 0\\-x^2+4=0\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow x=-2\)
Hay \(x\left|x\right|+4\ne0\Leftrightarrow x\ne-2\)
Kết hợp với \(x\ge-2\Rightarrow x>-2\)
g.
ĐKXĐ: \(\left\{{}\begin{matrix}x\ne0\\x\left|x\right|+4\ge0\end{matrix}\right.\)
Xét \(x\left|x\right|+4\ge0\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge0\\x^2+4\ge0\left(luôn-đúng\right)\end{matrix}\right.\\\left\{{}\begin{matrix}x< 0\\-x^2+4\ge0\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x\ge0\\\left\{{}\begin{matrix}x< 0\\-2\le x\le2\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x\ge0\\-2\le x< 0\end{matrix}\right.\)
\(\Leftrightarrow x\ge-2\)
Kết hợp \(x\ne0\Rightarrow\left[{}\begin{matrix}-2\le x< 0\\x>0\end{matrix}\right.\)
Tìm tập xác định của hàm số
y = \(\sqrt{x+8+2\sqrt{x+7}}+\dfrac{1}{1-x}\)
y= \(\sqrt{\sqrt{x^2+2x+2}-\left(x+1\right)}\)
Tìm tập xác định của hàm số :
\(y=2^{\sqrt{\left|x-3\right|-\left|8-x\right|}}+\sqrt{\frac{-\log_{0,5}\left(x-1\right)}{\sqrt{x^2-2x+8}}}\)
\(y=2^{\sqrt{\left|x-3\right|-\left|8-x\right|}}+\sqrt{\frac{-\log_{0,5}\left(x-1\right)}{\sqrt{x^2-2x+8}}}\)
Điều kiện : \(\begin{cases}\left|x-3\right|-\left|8-x\right|\ge0\\\frac{-\log_{0,5}\left(x-1\right)}{\sqrt{x^2-2x+8}}\ge0\end{cases}\)
\(\Leftrightarrow\begin{cases}\left|x-3\right|\ge\left|8-x\right|\\x^2-2x-8>0\\\log_{0,5}\left(x-1\right)\le0\end{cases}\) \(\Leftrightarrow\begin{cases}\left(x-3\right)^2\ge\left(8-x\right)^2\\x^2-2x-8>0\\x-1\ge1\end{cases}\)
\(\Leftrightarrow\begin{cases}x\ge\frac{11}{2}\\x< -2;x>4\\x\ge2\end{cases}\)
\(\Leftrightarrow x\ge\frac{11}{2}\) là tập xác định của hàm số
cho hàm số \(y=f\left(x\right)=\frac{2x^2+6\sqrt{\left(x^2+1\right)\left(x-2\right)}+5}{x^2+3x-4}\)
a. tìm tập xác định của hàm số y=f(x)
b. CMR : \(y\le3\)
a: ĐKXĐ: (x+4)(x-1)<>0
hay \(x\notin\left\{-4;1\right\}\)
b: \(y-3=\dfrac{2x^2+6\sqrt{\left(x^2+1\right)\left(x-2\right)}+5-3x^2-9x+12}{x^2+3x-4}\)
\(=\dfrac{-x^2-9x+17+6\sqrt{\left(x^2+1\right)\left(x-2\right)}}{x^2+3x-4}< =0\)
=>y<=3
tìm tập xác định của hàm số :
f(x) = \(\frac{x^2+1}{\left(x-1\right)\sqrt{x^3+2x^2+3x}}\)
f(x) = \(\frac{\sqrt{x-2}}{\left|x^2-3x+2\right|+\left|x^2-1\right|}\)
a) \(D=(0;+\infty)\backslash\left\{1\right\}\)
b) \(D=[2;+\infty)\)
Tìm tập xác định của hàm số y = f(x) = \(\left\{{}\begin{matrix}\sqrt{-3x+8}+x\\\sqrt{x+7}+1\end{matrix}\right.\)
cái đầu khi x<2, cái sau x≥2
Khi x<2 thì -3x>-6
=>-3x+8>2>0
=>\(y=\sqrt{-3x+8}+x\) luôn xác định khi x<2(1)
Khi x>=2 thì x+7>=9>0
=>\(f\left(x\right)=\sqrt{x+7}+1\) luôn xác định khi x>=2(2)
Từ (1),(2) suy ra tập xác định là D=R
Tìm tập xác định của hàm số:
d: \(y=\left\{{}\begin{matrix}\dfrac{x-3}{x-4};x< 0\\\sqrt{x+1};x\ge0\end{matrix}\right.\)
e: \(\sqrt[4]{\sqrt{x^2+2x+5}-\left(x+1\right)}\)
d.
Với \(x-4\ne0;\forall x< 0\Rightarrow\dfrac{x-3}{x-4}\) xác định với mọi \(x< 0\)
\(x+1>0;\forall x\ge0\Rightarrow\sqrt{x+1}\) xác định với mọi \(x\ge0\)
\(\Rightarrow\) Hàm xác định trên R
e.
Ta có:
\(\sqrt{x^2+2x+5}-\left(x+1\right)=\sqrt{\left(x+1\right)^2+4}-\left(x+1\right)\)
\(>\sqrt{\left(x+1\right)^2}-\left(x+1\right)=\left|x+1\right|-\left(x+1\right)\ge0\) ; \(\forall x\)
\(\Rightarrow\) Hàm xác định trên R
Tìm tập xác định của hàm số
\(y=f\left(x\right)=\dfrac{\sqrt{4\pi^2-x^2}}{cos\left(x\right)}\)
Hàm số xác định khi: \(\left\{{}\begin{matrix}4\pi^2-x^2\ge0\\cosx\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-2\pi\le x\le2\pi\\x\ne\dfrac{\pi}{2}+k\pi\end{matrix}\right.\)
Tìm tập xác định của hàm sô \(y=\sqrt{x+2}+\dfrac{x^3}{4\left|x\right|-3}\) và hàm số \(y=\dfrac{x}{\left|x\right|x+1}-\sqrt{3-x}\)