Cho phương trình : \(\left(m+1\right)x^4-2\left(2m-3\right)x^2+6m+5=0\)
Tìm m để phương trình có 4 nghiệm phân biệt sao cho \(x_1< x_2< x_3< 1< x_4\)
Cho phương trình \(x^4-\left(3m+1\right)x^2+6m-2=0.\)
Tìm tất cả các giá trị của tham số m để phương trình có 4 nghiệm phân biệt \(x_1;x_2;x_3;x_4\)sao cho \(x_1-x_2=x_2-x_3=x_3-x_4\)
cho phương trình \(x^4-2\left(m+2\right)x^2+2m+3=0\) tìm tất cả giá trị của m để phương trình có 4 nghiệm phân biệt \(x_1,x_2,x_3,x_4\) thỏa mãn \(x_1^2+x_2^2+x_3^2+x_4^2=52\)
Cho phương trình: \(x^4-2\left(2m+1\right)x^2+4m^2=0\). Tìm m để phương trình có 4 nghiệm phân biệt x1,x2,x3,x4 thỏa mãn \(x_1^4+x_2^4+x_3^4+x_4^4=17\)
Cho PT \(x^4+\left(1-m\right)x^2+2m-2=0\left(1\right)\)
Tìm $m$ để PT có 4 nghiệm phân biệt $x_1,x_2,x_3,x_4$ sao cho
\(\dfrac{x_1x_2x_3}{2x_4}+\dfrac{x_1x_2x_4}{2x_3}+\dfrac{x_1x_3x_4}{2x_2}+\dfrac{x_2x_3x_4}{2x_1}=2017\)
Đặt \(x^2=t\) \(\Rightarrow t^2+\left(1-m\right)t+2m-2=0\) (1)
Pt đã cho có 4 nghiệm pb \(\Leftrightarrow\) (1) có 2 nghiệm dương pb
\(\Rightarrow\left\{{}\begin{matrix}\Delta=\left(1-m\right)^2-8\left(m-1\right)>0\\t_1+t_2=m-1>0\\t_1t_2=2m-2>0\end{matrix}\right.\) \(\Rightarrow m>9\)
Khi đó, do vai trò của \(x_1;x_2;x_3;x_4\) như nhau, ko mất tính tổng quát, giả sử \(x_1=-\sqrt{t_1};x_2=\sqrt{t_1}\) ; \(x_3=-\sqrt{t_2};x_4=\sqrt{t_2}\)
\(\Rightarrow x_1x_2x_3x_4=t_1t_2\) ; \(x_1^2=x_2^2=t_1\) ; \(x_3^2=x_4^2=t_2\)
\(\Rightarrow\dfrac{x_1x_2x_3x_4}{2x_4^2}+\dfrac{x_1x_2x_3x_4}{2x_3^2}+\dfrac{x_1x_2x_3x_4}{2x_2^2}+\dfrac{x_1x_2x_3x_4}{2x_1^2}=2017\)
\(\Leftrightarrow\dfrac{t_1t_2}{2t_2}+\dfrac{t_1t_2}{2t_2}+\dfrac{t_1t_2}{2t_1}+\dfrac{t_1t_2}{2t_1}=2017\)
\(\Leftrightarrow t_1+t_2=2017\)
\(\Leftrightarrow m-1=2017\Rightarrow m=2018\)
Cho phương trình:\(x^2-\left(2m+5\right)x+2m+1=0\)
Tìm m để phương trình có 2 nghiệm phân biệt \(x_1;x_2\) sao cho P=/\(\sqrt{x_1}-\sqrt{x_2}\) /đạt GTNN
Phương trình có 2 nghiệm phân biệt ⇔ △ > 0
⇔ 4m2 + 20m + 25 - 8m - 4 > 0
⇔ 4m2 + 12m + 21 > 0
⇔ (2m + 3)2 + 12 > 0 ⇔ m ∈ R
Theo hệ thức Viet có: \(\left\{{}\begin{matrix}x_1+x_2=2m+5\\x_1.x_2=2m+1\end{matrix}\right.\)
=> P2 = (\(\left|\sqrt{x_1}-\sqrt{x_2}\right|\))2 = (\(\sqrt{x_1}-\sqrt{x_2}\))2
= x1 + x2 - 2\(\sqrt{x_1.x_2}\)
= 2m + 5 - 2\(\sqrt{2m+1}\)
= 2m + 1 - 2\(\sqrt{2m+1}\) + 1 + 3
= (\(\sqrt{2m+1}\) - 1)2 + 3 ≥ 3 ∀m
=> P ≥ \(\sqrt{3}\)
Dấu "=" xảy ra ⇔ \(\sqrt{2m+1}\) - 1 = 0 ⇔ \(\sqrt{2m+1}\)=1 ⇔ 2m + 1 = 1 ⇔ m = 0
Vậy với m = 0 thì P đạt GTNN = \(\sqrt{3}\)
Cho 2 phương trình ẩn x : \(x^2+\left(m-3\right)x-2m^2+3m=0\).Tìm m để phương trình đã cho có hai nghiệm phân biệt x\(_1\) ;x\(_2\) thỏa mãn \(\dfrac{x_1.x_2}{x_1+x_3}\)=\(-\dfrac{m^2}{2}\)
Sửa đề: \(\dfrac{x_1x_2}{x_1+x_2}=-\dfrac{m^2}{2}\)
PT có 2 nghiệm phân biệt \(\Leftrightarrow\Delta>0\)
\(\Leftrightarrow\left(m-3\right)^2+4\left(2m^2-3m\right)>0\\ \Leftrightarrow9m^2-18m+9>0\\ \Leftrightarrow9\left(m-1\right)^2>0\left(\text{luôn đúng},\forall m\ne1\right)\)
Do đó PT có 2 nghiệm phân biệt với mọi \(m\ne1\)
Áp dụng Viét: \(\left\{{}\begin{matrix}x_1+x_2=3-m\\x_1x_2=3m-2m^2\end{matrix}\right.\)
Ta có \(\dfrac{x_1x_2}{x_1+x_2}=-\dfrac{m^2}{2}\Leftrightarrow\dfrac{3m-2m^2}{3-m}=-\dfrac{m^2}{2}\)
\(\Leftrightarrow4m^2-12m=3m^2-m^3\\ \Leftrightarrow m^3+m^2-12m=0\\ \Leftrightarrow m\left(m^2+4m-3m-12\right)=0\\ \Leftrightarrow m\left(m+4\right)\left(m-3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}m=0\\m=-4\\m=3\end{matrix}\right.\)
Vậy \(\left[{}\begin{matrix}m=0\\m=-4\\m=3\end{matrix}\right.\) thỏa yêu cầu đề
Cho phương trình: \(x^2+\left(2m+1\right)x+m^2-1=0\) (1) ( x là ẩn số). Tìm m để phương trình (1) có 2 nghiệm phân biệt \(x_1;x_2\) thỏa mãn: \(\left(x_1-x_2\right)^2=x_1-5x_2\)
b1: tìm đk m t/m: Δ>0 ↔ m∈(\(\dfrac{1-\sqrt{10}}{2}\) ; \(\dfrac{1+\sqrt{10}}{2}\))
b2: ➝x1+x2 =-2m-1 (1)
→ x1.x2=m^2-1 (2)
b3: biến đổi : (x1-x2)^2 = x1-5x2
↔ (x1+x2)^2 -4.x1.x2 -(x1+x2) +6.x2=0
↔4.m^2 +4m +1 - 4.m^2 +4 +2m+1+6. x2=0
↔x2= -m-1
B4: thay x2= -m-1 vào (1) → x1 = -m
Thay x2 = -m-1, x1 = -m vào (2)
→m= -1
B5: thử lại:
Với m= -1 có pt: x^2 -x =0
Có 2 nghiệm x1=1 và x2=0 (thoả mãn)
Cho phương trình: \(x^2-\left(2m+5\right)x+2m+1=0\). Tìm m để phương trình có hai nghiệm phân biệt \(x_1,x_2\) mà biểu thức M=\(\left|\sqrt{x_1}-\sqrt{x_2}\right|\) đạt giá trị nhỏ nhất.
Để phương trình có 2 nghiệm phân biệt thì:
\(\Delta>0\)
<=> \(\left[-\left(2m+5\right)\right]^2-4.1.\left(2m+1\right)>0\)
\(\Leftrightarrow4m^2+12m+21>0\)
\(\Leftrightarrow4m^2+12m+9+12>0\)
<=> \(\left(2m+3\right)^2+12>0\)
Vì (2m+3)2 luôn lớn hơn hoặc bằng 0 với mọi m nên phương trình đã cho có nghiệm với mọi giá trị m.
Theo viét:
\(\left\{{}\begin{matrix}x_1+x_2=2m+5\\x_1x_2=2m+1\end{matrix}\right.\)
Theo đề:
\(M=\left|\sqrt{x_1}-\sqrt{x_2}\right|\) (điều kiện: \(x_1;x_2\ge0\))
=> \(M^2=x_1+x_2-2\sqrt{x_1x_2}=2m+5-2\sqrt{2m+1}\)
<=> \(M^2=\left(\sqrt{2m+1}\right)\left(\sqrt{2m+1}\right)-2\sqrt{\left(2m+1\right)}+4\)
<=> \(M^2=\left(\sqrt{2m+1}\right)\left(\sqrt{2m+1}-2\right)+4\)
<=> \(M^2=\left(\sqrt{2m+1}-1\right)^2+4\ge4\)
=> \(M\ge2\).
Dấu "=" xảy ra khi m = 0
Thế m = 0 vào phương trình ở đề được:
\(x^2-5x+1=0\)
Phương trình này có hai nghiệm dương -> thỏa mãn điều kiện.
Vậy min M = 2 và m = 0
☕T.Lam
Cho phương trình \(x^3-mx-2\left(m-4\right)=0\). Tìm m để phương trình có 3 nghiệm phân biệt \(x_1,x_2,x_3\)sao cho \(x_1^2+x_2^2+x_3^2+x_1x_2x_3=25\)