Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Kaori Miyazono
Xem chi tiết
Yen Nhi
8 tháng 1 2021 lúc 22:56
Bạn tham khảo nhé!

Bài tập Tất cả

Bài tập Tất cả

Khách vãng lai đã xóa
Vũ Việt Đức
Xem chi tiết
Thao Thanh
Xem chi tiết
Lương Trung Thông
16 tháng 4 2016 lúc 7:38

khó thế

Nguyễn Hoàng Minh
Xem chi tiết
Nguyễn Việt Lâm
19 tháng 2 2022 lúc 0:06

Đặt \(x^2=t\) \(\Rightarrow t^2+\left(1-m\right)t+2m-2=0\) (1)

Pt đã cho có 4 nghiệm pb \(\Leftrightarrow\) (1) có 2 nghiệm dương pb

\(\Rightarrow\left\{{}\begin{matrix}\Delta=\left(1-m\right)^2-8\left(m-1\right)>0\\t_1+t_2=m-1>0\\t_1t_2=2m-2>0\end{matrix}\right.\) \(\Rightarrow m>9\)

Khi đó, do vai trò của \(x_1;x_2;x_3;x_4\) như nhau, ko mất tính tổng quát, giả sử \(x_1=-\sqrt{t_1};x_2=\sqrt{t_1}\) ; \(x_3=-\sqrt{t_2};x_4=\sqrt{t_2}\)

\(\Rightarrow x_1x_2x_3x_4=t_1t_2\) ; \(x_1^2=x_2^2=t_1\) ; \(x_3^2=x_4^2=t_2\)

\(\Rightarrow\dfrac{x_1x_2x_3x_4}{2x_4^2}+\dfrac{x_1x_2x_3x_4}{2x_3^2}+\dfrac{x_1x_2x_3x_4}{2x_2^2}+\dfrac{x_1x_2x_3x_4}{2x_1^2}=2017\)

\(\Leftrightarrow\dfrac{t_1t_2}{2t_2}+\dfrac{t_1t_2}{2t_2}+\dfrac{t_1t_2}{2t_1}+\dfrac{t_1t_2}{2t_1}=2017\)

\(\Leftrightarrow t_1+t_2=2017\)

\(\Leftrightarrow m-1=2017\Rightarrow m=2018\)

Hoàng Thị Mai Trang
Xem chi tiết
Đào Thu Hiền
13 tháng 5 2021 lúc 23:39

Phương trình có 2 nghiệm phân biệt ⇔ △ > 0

⇔ 4m2 + 20m + 25 - 8m - 4 > 0

⇔ 4m2 + 12m + 21 > 0

⇔ (2m + 3)2 + 12 > 0 ⇔ m ∈ R

Theo hệ thức Viet có: \(\left\{{}\begin{matrix}x_1+x_2=2m+5\\x_1.x_2=2m+1\end{matrix}\right.\)

=> P2 = (\(\left|\sqrt{x_1}-\sqrt{x_2}\right|\))2 = (\(\sqrt{x_1}-\sqrt{x_2}\))2

                                       = x1 + x2 - 2\(\sqrt{x_1.x_2}\)

                                       = 2m + 5 - 2\(\sqrt{2m+1}\)

                                       = 2m + 1 - 2\(\sqrt{2m+1}\) + 1 + 3

                                       = (\(\sqrt{2m+1}\) - 1)2 + 3 ≥ 3 ∀m

=> P ≥ \(\sqrt{3}\) 

Dấu "=" xảy ra ⇔ \(\sqrt{2m+1}\) - 1 = 0 ⇔ \(\sqrt{2m+1}\)=1 ⇔ 2m + 1 = 1 ⇔ m = 0

Vậy với m = 0 thì P đạt GTNN = \(\sqrt{3}\)

Hải Yến Lê
Xem chi tiết
Nguyễn Hoàng Minh
12 tháng 12 2021 lúc 22:37

Sửa đề: \(\dfrac{x_1x_2}{x_1+x_2}=-\dfrac{m^2}{2}\)

PT có 2 nghiệm phân biệt \(\Leftrightarrow\Delta>0\)

\(\Leftrightarrow\left(m-3\right)^2+4\left(2m^2-3m\right)>0\\ \Leftrightarrow9m^2-18m+9>0\\ \Leftrightarrow9\left(m-1\right)^2>0\left(\text{luôn đúng},\forall m\ne1\right)\)

Do đó PT có 2 nghiệm phân biệt với mọi \(m\ne1\)

Áp dụng Viét: \(\left\{{}\begin{matrix}x_1+x_2=3-m\\x_1x_2=3m-2m^2\end{matrix}\right.\)

Ta có \(\dfrac{x_1x_2}{x_1+x_2}=-\dfrac{m^2}{2}\Leftrightarrow\dfrac{3m-2m^2}{3-m}=-\dfrac{m^2}{2}\)

\(\Leftrightarrow4m^2-12m=3m^2-m^3\\ \Leftrightarrow m^3+m^2-12m=0\\ \Leftrightarrow m\left(m^2+4m-3m-12\right)=0\\ \Leftrightarrow m\left(m+4\right)\left(m-3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}m=0\\m=-4\\m=3\end{matrix}\right.\)

Vậy \(\left[{}\begin{matrix}m=0\\m=-4\\m=3\end{matrix}\right.\) thỏa yêu cầu đề

Big City Boy
Xem chi tiết
Chi Nguyễn Minh
24 tháng 3 2022 lúc 14:19

b1: tìm đk m t/m: Δ>0 ↔ m∈(\(\dfrac{1-\sqrt{10}}{2}\) ; \(\dfrac{1+\sqrt{10}}{2}\))

b2: ➝x1+x2 =-2m-1 (1)

      → x1.x2=m^2-1 (2)

b3: biến đổi : (x1-x2)^2 = x1-5x2

↔ (x1+x2)^2 -4.x1.x2 -(x1+x2) +6.x2=0

↔4.m^2 +4m +1 - 4.m^2 +4 +2m+1+6. x2=0

↔x2= -m-1

B4: thay x2= -m-1 vào (1) → x1 = -m

     Thay x2 = -m-1, x1 = -m vào (2) 

→m= -1

B5: thử lại:

Với m= -1 có pt: x^2 -x =0

Có 2 nghiệm x1=1 và x2=0 (thoả mãn)

sky12
Xem chi tiết
Đỗ Tuệ Lâm
10 tháng 4 2023 lúc 23:04

Để phương trình có 2 nghiệm phân biệt thì:

\(\Delta>0\)

<=> \(\left[-\left(2m+5\right)\right]^2-4.1.\left(2m+1\right)>0\)

\(\Leftrightarrow4m^2+12m+21>0\)

\(\Leftrightarrow4m^2+12m+9+12>0\)

<=> \(\left(2m+3\right)^2+12>0\)

Vì (2m+3)2 luôn lớn hơn hoặc bằng 0 với mọi m nên phương trình đã cho có nghiệm với mọi giá trị m.

Theo viét:

\(\left\{{}\begin{matrix}x_1+x_2=2m+5\\x_1x_2=2m+1\end{matrix}\right.\)

Theo đề:

\(M=\left|\sqrt{x_1}-\sqrt{x_2}\right|\) (điều kiện: \(x_1;x_2\ge0\))

=> \(M^2=x_1+x_2-2\sqrt{x_1x_2}=2m+5-2\sqrt{2m+1}\)

<=> \(M^2=\left(\sqrt{2m+1}\right)\left(\sqrt{2m+1}\right)-2\sqrt{\left(2m+1\right)}+4\)

<=> \(M^2=\left(\sqrt{2m+1}\right)\left(\sqrt{2m+1}-2\right)+4\)

<=> \(M^2=\left(\sqrt{2m+1}-1\right)^2+4\ge4\)

=> \(M\ge2\).

Dấu "=" xảy ra khi m = 0

Thế m = 0 vào phương trình ở đề được:

\(x^2-5x+1=0\)

Phương trình này có hai nghiệm dương -> thỏa mãn điều kiện.

Vậy min M = 2 và m = 0

T.Lam

Đồ Ngốc
Xem chi tiết