Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Học24
Xem chi tiết
Trên con đường thành côn...
8 tháng 8 2021 lúc 15:30

undefined

Nguyễn Tuyết Minh
Xem chi tiết
Nguyễn Hoàng Minh
27 tháng 10 2021 lúc 9:32

Sửa: \(Đk:x\ge0\)

\(C=1-\dfrac{1}{\sqrt{x}+2022}\ge1-\dfrac{1}{0+2022}=\dfrac{2021}{2022}\\ C_{min}=\dfrac{2021}{2022}\Leftrightarrow x=0\)

Lấp La Lấp Lánh
27 tháng 10 2021 lúc 9:34

\(C=\dfrac{\sqrt{x}+2022}{\sqrt{x}+2022}-\dfrac{1}{\sqrt{x}+2022}=1-\dfrac{1}{\sqrt{x}+2022}\)

Do \(\sqrt{x}+2022\ge2022\Leftrightarrow\dfrac{1}{\sqrt{x}+2022}\le\dfrac{1}{2022}\Leftrightarrow-\dfrac{1}{\sqrt{x}+2022}\ge-\dfrac{1}{2022}\)

\(\Leftrightarrow C=1-\dfrac{1}{\sqrt{x}+2022}\ge1-\dfrac{1}{2022}=\dfrac{2011}{2022}\)

Dấu"=" xảy ra \(\Leftrightarrow x=0\)

Noob_doge
27 tháng 10 2021 lúc 12:07

√x+2022≥2022⇔1√x+2022≤12022⇔−1√x+2022≥−12022

Trần Đình Hoàng Quân
Xem chi tiết
when the imposter is sus
15 tháng 6 2023 lúc 9:25

Với x ≥ 0 thì \(\sqrt{x}\ge0\) nên \(\sqrt{x}+1\ge1\)

Khi đó \(B=\left(\sqrt{x}+1\right)^{99}+2022\ge1^{99}+2022\)

Hay \(B=\left(\sqrt{x}+1\right)^{99}+2022\ge2023\)

Dấu "=" xảy ra khi \(\sqrt{x}=0\) hay x = 0

Vậy GTNN của \(B=\left(\sqrt{x}+1\right)^{99}+2022\) là 2023 khi x = 0

Lê Minh Vũ
14 tháng 6 2023 lúc 19:43

\(B=\left(\sqrt{x}+1\right)^{99}+2022\left(x\ge0\right)\)

Vì: \(x\ge0\)

Nên => \(\left(\sqrt{x}+1\right)^{99}\ge0\)

=> \(\left(\sqrt{x}+1\right)^{99}+2022\ge2022\)

=> \(B\ge2022\)

Dấu " = " xảy ra khi: \(\Leftrightarrow\sqrt{x}+1=0\Leftrightarrow\sqrt{x}=-1\left(voli\right)\)

Vậy: B không có giá trị nhỏ nhất

bảo minh
Xem chi tiết
Hoàng Lê Bảo Ngọc
20 tháng 8 2016 lúc 21:27

1. Ta có : \(A=\frac{\left(x+4\right)\left(x+9\right)}{x}=\frac{x^2+13x+36}{x}=x+\frac{36}{x}+13\)

Áp dụng bđt Cauchy : \(x+\frac{36}{x}\ge2\sqrt{x.\frac{36}{x}}=12\)

\(\Rightarrow A\ge25\)

Vậy Min A = 25 \(\Leftrightarrow\begin{cases}x>0\\x=\frac{36}{x}\end{cases}\) \(\Leftrightarrow x=6\)

Hoàng Lê Bảo Ngọc
20 tháng 8 2016 lúc 21:29

2. \(B=\frac{\left(x+100\right)^2}{x}=\frac{x^2+200x+100^2}{x}=x+\frac{100^2}{x}+200\)

Áp dụng bđt Cauchy : \(x+\frac{100^2}{x}\ge2\sqrt{x.\frac{100^2}{x}}=200\)

\(\Rightarrow B\ge400\)

Vậy Min B = 400 \(\Leftrightarrow\begin{cases}x>0\\x=\frac{100^2}{x}\end{cases}\) \(\Leftrightarrow x=100\)

Vũ Văn Tuần
Xem chi tiết
Akai Haruma
6 tháng 1 2023 lúc 19:58

Lời giải:

Sử dụng BĐT sau:

Cho $a,b$ thực. Khi đó $|a|+|b|\geq |a+b|$. Dấu "=" xảy ra khi $ab\geq 0$. Áp dụng vào bài toán:

$|x-2018|+|x-2022|=|x-2018|+|2022-x|\geq |x-2018+2022-x|=4$

$|x-2020|\geq 0$ (theo tính chất trị tuyệt đối)

$\Rightarrow A\geq 4+0=4$

Vậy GTNN của $A$ là $4$. Giá trị này đạt được khi $(x-2018)(2022-x)\geq 0$ và $x-2020=0$

Hay khi $x=2020$

Akai Haruma
28 tháng 1 2023 lúc 11:39

@Vũ Văn Tuần:

Để biết vì sao $|a|+|b|\geq |a+b|$ đạt dấu "=" khi $ab\geq 0$ thì bạn đi chứng minh BĐT này thôi.

Xét các TH sau:

TH1: Ít nhất 1 trong 2 số bằng 0. Không mất tính tổng quát giả sử $a=0$. Khi đó: $|a|+|b|=|b|=|b+0|=|a+b|$

TH2: $a,b$ đều khác 0. Xét các TH nhỏ hơn:

TH2.1: $a,b$ cùng dương kéo theo $a+b$ dương. Khi đó:
$|a|=a; |b|=b; |a+b|=a+b$

$\Rightarrow |a|+|b|=|a+b|$

TH2.2: $a,b$ cùng âm thì kéo theo $a+b<0$ Khi đó:
$|a|=-a; |b|=-b; |a+b|=-(a+b)$
$\Rightarrow |a|+|b|=-a+(-b)=-(a+b)=|a+b|$

TH2.3: $a,b$ khác dấu. Không mất tính tổng quát giả sử $a$ dương $b$ âm.

$\Rightarrow |a|=a; |b|=-b$

Nếu $a+b\geq 0$ thì $|a+b|=a+b$

$\Rightarrow |a|+|b|-|a+b|=a+(-b)-(a+b)=-2b>0$ do $b<0$

$\Rightarrow |a|+|b|> |a+b|$

Nếu $a+b<0$ thì $|a+b|=-(a+b)$

$\Rightarrow |a|+|b|-|a+b|=a+(-b)--(a+b)=a+(-b)+a+b=2a> 0$ do $a>0$

$\Rightarrow |a|+|b|> |a+b|$ 

Từ các TH đã xét ta suy ra $|a|+|b|\geq |a+b|$

Dấu "=" xảy ra khi $a,b$ cùng dương, $a,b$ cùng âm hoặc ít nhất 1 trong 2 số $a,b$ bằng $0$

Tức là $ab\geq 0$

Nguyễn An
Xem chi tiết
dinh huong
Xem chi tiết
nguyễn công quốc bảo
Xem chi tiết
Athanasia Karrywang
9 tháng 9 2021 lúc 19:39

 GTNN của biểu thức : A= (x-1)^2021 + (x-2)^2022

Là   MAX A = 1  khi  \(\orbr{\begin{cases}x=1\\x=-1\end{cases}}\)

Khách vãng lai đã xóa
Nguyễn Thùy Chi
Xem chi tiết