A=\(\dfrac{4-2x+2x}{2-x}\)+\(\dfrac{100}{x}\)+2022
A= 2 +\(\dfrac{2x}{2-x}\)+\(\dfrac{100}{x}\)-50 +2072
A=\(\dfrac{2x}{2-x}\)+\(\dfrac{50\left(2-x\right)}{x}\)+2074
Tác có x>0 => 2x>0
x<2 => 2-x>0
Áp dụng bất đẳng thức AM-GM ta có:
\(\dfrac{2x}{2-x}\)+\(\dfrac{50\left(2-x\right)}{x}\) + 2074 >= 2\(\sqrt{\dfrac{2x.50\left(2-x\right)}{x\left(2-x\right)}}\) + 2074
= 20 + 2074 = 2094
Vậy A >= 2094 và dấu "=" xảy ra khi \(\dfrac{2x}{2-x}\)=\(\dfrac{50\left(2-x\right)}{x}\) => x= 5/3