Tìm nghiệm nguyên của pt 3x+4x=5x
Tìm nghiệm nguyên của phương trình: 3x+4x=5x.
Chia cả 2 vế của phương trình cho 5x≠05x≠0 ta được phương trình tương đương:
PT⇔(3/5)x+(4/5)x=1
Nếu x=2 thì (3/5)2+(4/5)2=1 (đúng)Nếu x>2 thì (3/5)x<3/5;(4/5)x<4/5⇒VT (loại)Nếu x=0 thì 2=1 (vô lí!)Tương tự với trường hợp x< 2
Vậy nghiệm của phương trình là x=2
Giải pt nghiệm nguyên
a)2x^2 + 4x=19-3y^2
b)3x^2 + 4y^2=6x+13
c)5x^2 + 2xy +y^2 -4x-40=0
Tìm nghiệm nguyên của pt: 5x2+2xy+y2-4x-40=0
5x2+2xy+y2-4x-40=0
<=>(x+y)2=4(10+x-x2)
<=>x+y=2\(\sqrt{10+x-x^2}\)
Giải pt nghiệm nguyên
a)3x^2 + 4y^2=6x+13
b)5x^2 + 2xy +y^2 -4x-40=0
c)x^2+y^2=x+y+8
d)x^2-y^2-4x-4y=92
1/ Tìm m để pt sau vô nghiệm
a) 5x2+10x+m=0
b) 3x2+mx+1=0
2/ Tìm m để pt có 2 nghiệm phân biệt
a) 3x2-5x+m=0
b) 4x2+mx-15=0
c) 5x2+mx+1=0
d) mx2-4x-5=0
Cho phương trình \(4m^2x-4x-3m=3\)
a)Giải pt với m=-1
b)Tìm giá trị của m để pt có nghiệm x=2
c)Tìm giá trị của m để pt tương đương với pt \(5x-\left(3x-2\right)=6\)
d)Tìm giá trị của m để pt vô nghiệm
e)Tìm giá trị của m để pt có nghiệm dương
a)Thay m=-1 vào phương trình ta đc:
\(4.\left(-1\right)^2.x-4x-3.\left(-1\right)=3\)
\(\Leftrightarrow4x-4x+3=3\)
\(\Leftrightarrow0x=0\)(Luôn đúng)
\(\Leftrightarrow\)Pt có vô số nghiệm
Vậy pt có vô số nghiệm.
b)Thay x=2 vào phương trình ta có:
\(4m^2.2-4.2-3m=3\)
\(\Leftrightarrow8m^2-8-3m=3\)
\(\Leftrightarrow8m^2-3m-11=0\)
\(\Leftrightarrow8m^2+8m-11m-11=0\)
\(\Leftrightarrow8m\left(m+1\right)-11\left(m+1\right)=0\)
\(\Leftrightarrow\left(m+1\right)\left(8m-11\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}m+1=0\\8m-11=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}m=-1\\m=\frac{11}{8}\end{cases}}\)
Vậy tập nghiệm của pt là S={-1;\(\frac{11}{8}\)}
c)Ta có:
\(5x-\left(3x-2\right)=6\)
\(\Leftrightarrow5x-3x+2=6\)
\(\Leftrightarrow2x=4\)
\(\Leftrightarrow x=2\)
Có x=2 là nghiệm của pt \(5x-\left(3x-2\right)=6\)
Để \(4m^2x-4x-3m=3\Leftrightarrow5x-\left(3x-2\right)=6\)
\(\Leftrightarrow\)x=2 là nghiệm của \(4m^2x-4x-3m=3\)
Thay x=2 vào pt trên ta đc:
\(4m^2.2-4.2-3m=3\)(Giống câu b)
Vậy m=-1,m=11/8...
d)Có:\(4m^2x-4x-3m=3\)
\(\Leftrightarrow4x\left(m^2-1\right)=3+3m\)
Để pt vô nghiệm
\(\Leftrightarrow\hept{\begin{cases}m^2-1=0\\3+3m\ne0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}m=\pm1\\m\ne-1\end{cases}}\)
\(\Leftrightarrow m=1\)
Vậy m=1 thì pt vô nghiệm.
Tính các nghiệm nguyên của pt |x-3|+|4x-1|=3x+2
Có tất cả bao nhiêu số nguyên là nghiệm của bất pt: 4x^2 - 5x - 9< 0?
A. 2
B. 3
C. 4
D. Đáp án khác
Online chờ gấp!!!
Ta có: \(4x^2-5x-9< 0\) \(\Leftrightarrow-1< x< \dfrac{9}{4}\)
⇒ Số nghiệm nguyên của BPT là: 3
Đáp án: B
1. Cho pt \(3x^2+4x+1=0\)
có nghiệm x1,x2, không giải pt, hãy tính giá trị biểu thức \(C=\dfrac{x_1}{x_2-1}+\dfrac{x_2}{x_1-1}\)
2. . Cho pt \(3x^2-5x-1=0\)
có nghiệm x1,x2, không giải pt, hãy tính giá trị biểu thức \(D=\dfrac{x_1-x_2}{x_1}+\dfrac{x_2-1}{x_2}\)
3. . Cho pt \(3x^2-7x-1=0\)
có nghiệm x1,x2, không giải pt, hãy tính giá trị biểu thức \(B=\dfrac{2x^2_2}{x_1+x_2}+2x_1\)
1. Theo hệ thức Vi-ét, ta có: \(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{4}{3}\\x_1.x_2=\dfrac{1}{3}\end{matrix}\right.\)
\(C=\dfrac{x_1}{x_2-1}+\dfrac{x_2}{x_1-1}=\dfrac{x_1\left(x_1-1\right)+x_2\left(x_2-1\right)}{\left(x_1-1\right)\left(x_2-1\right)}\)
\(=\dfrac{x_1^2-x_1+x_2^2-x_2}{x_1x_2-x_1-x_2+1}=\dfrac{\left(x_1+x_2\right)^2-2x_1x_2-\left(x_1+x_2\right)}{x_1x_2-\left(x_1+x_2\right)+1}\)
\(=\dfrac{\left(-\dfrac{4}{3}\right)^2-2.\dfrac{1}{3}-\left(-\dfrac{4}{3}\right)}{\dfrac{1}{3}-\left(-\dfrac{4}{3}\right)+1}=\dfrac{\dfrac{22}{9}}{\dfrac{8}{3}}=\dfrac{11}{12}\)
\(1,3x^2+4x+1=0\)
Do pt có 2 nghiệm \(x_1,x_2\) nên theo đ/l Vi-ét ta có :
\(\left\{{}\begin{matrix}S=x_1+x_2=\dfrac{-b}{a}=-\dfrac{4}{3}\\P=x_1x_2=\dfrac{c}{a}=\dfrac{1}{3}\end{matrix}\right.\)
Ta có :
\(C=\dfrac{x_1}{x_2-1}+\dfrac{x_2}{x_1-1}\)
\(=\dfrac{x_1\left(x_1-1\right)+x_2\left(x_2-1\right)}{\left(x_2-1\right)\left(x_1-1\right)}\)
\(=\dfrac{x_1^2-x_1+x_2^2-x_2}{x_1x_2-x_2-x_1+1}\)
\(=\dfrac{\left(x_1^2+x_2^2\right)-\left(x_1+x_2\right)}{x_1x_2-\left(x_1+x_2\right)+1}\)
\(=\dfrac{S^2-2P-S}{P-S+1}\)
\(=\dfrac{\left(-\dfrac{4}{3}\right)^2-2.\dfrac{1}{3}-\left(-\dfrac{4}{3}\right)}{\dfrac{1}{3}-\left(-\dfrac{4}{3}\right)+1}\)
\(=\dfrac{11}{12}\)
Vậy \(C=\dfrac{11}{12}\)
\(3,3x^2-7x-1=0\)
Do pt có 2 nghiệm \(x_1,x_2\) nên theo đ/l Vi-ét ta có :
\(\left\{{}\begin{matrix}S=x_1+x_2=-\dfrac{b}{a}=\dfrac{7}{3}\\P=x_1x_2=\dfrac{c}{a}=-\dfrac{1}{3}\end{matrix}\right.\)
Ta có :
\(B=\dfrac{2x_2^2}{x_1+x_2}+2x_1\)
\(=\dfrac{2x_2^2+2x_1\left(x_1+x_2\right)}{x_1+x_2}\)
\(=\dfrac{2x_2^2+2x_1^2+2x_1x_2}{x_1+x_2}\)
\(=\dfrac{2\left(x_1^2+x_2^2\right)+2x_1x_2}{x_1+x_2}\)
\(=\dfrac{2\left(S^2-2P\right)+2P}{S}\)
\(=\dfrac{2\left(\dfrac{7}{3}^2-2\left(-\dfrac{1}{3}\right)\right)+2\left(-\dfrac{1}{3}\right)}{\dfrac{7}{3}}\)
\(=\dfrac{104}{21}\)
Vậy \(B=\dfrac{104}{21}\)
1/ tìm x,y nguyên dương thỏa mãn: \(x^2-y^2+2x-4y-10=0\)0
2/giải pt nghiệm nguyên :\(x^2+2y^2+3xy+3x+5y=15\)
3/tìm các số nguyên x;y thỏa mãn:\(x^3+3x=x^2y+2y+5\)
4/tìm tất cả các nghiệm nguyên dương x,y thỏa mãn pt:\(5x+7y=112\)