Cho 3a+5b=12 . Tìm giá trị lớn nhất của \(B=ab\)
Cho a, b > 0 và 3a + 5b = 12. Tìm giá trị lớn nhất của tích P = ab.
Áp dụng BĐT Côsi cho 2 số dương, ta có:
\(3a+5b=12\ge2\sqrt{3a.5b}=2\sqrt{15ab}\)
\(\Leftrightarrow\sqrt{15ab}\le6\)
\(\Leftrightarrow ab\le\dfrac{36}{15}\)
Dấu "=" \(\Leftrightarrow\left\{{}\begin{matrix}3a=5b\\3a+5b=12\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=2\\b=\dfrac{6}{5}\end{matrix}\right.\)
Cho a, b > 0 và 3a + 5b = 12. Tìm giá trị lớn nhất của tích P = ab.
Theo BĐT cosi ta có:
\(3a+5b\ge2\sqrt{3a\cdot5b}\)
\(\Leftrightarrow3a+5b\ge2\sqrt{15ab}\)
\(\Leftrightarrow12\ge2\sqrt{15ab}\)
\(\Leftrightarrow\sqrt{15ab}\le\dfrac{12}{2}\)
\(\Leftrightarrow\sqrt{15ab}\le6\)
\(\Leftrightarrow15ab\le36\)
\(\Leftrightarrow ab\le\dfrac{36}{15}\)
\(\Leftrightarrow ab\le\dfrac{12}{5}\)
\(\Rightarrow P\le\dfrac{12}{5}\)
Vậy: \(P_{max}=\dfrac{12}{5}\)
Cho a, b > 0 và 3a + 5b = 12. Tìm giá trị lớn nhất của tích P = ab.
\(12=3a+5b\ge2\sqrt{3a.5b}=2\sqrt{15ab}\Rightarrow ab\le\frac{36}{15}=\frac{12}{5}\)
Dấu " = " xảy ra khi \(3a=5b;3a+5b=12\Leftrightarrow a=2;b=\frac{6}{5}\)
Nguồn: Mr Lazy
Cho a, b > 0 và 3a + 5b = 12. Tìm giá trị lớn nhất của tích P = ab.
c) Cho a, b > 0 và 3a + 5b = 12. Tìm giá trị lớn nhất của tích P = ab.
Cho a, b > 0 và 3a + 5b = 12. Tìm giá trị lớn nhất của tích P = ab.
\(12=3a+5b\ge2\sqrt{3a.5b}=2\sqrt{15ab}\Rightarrow ab\le\frac{36}{15}=\frac{12}{5}\)
Dấu "=" xảy ra khi \(3a=5b;\text{ }3a+5b=12\Leftrightarrow a=2;\text{ }b=\frac{6}{5}\)
Cho x + y = 2. Tìm giá trị nhỏ nhất của biểu thức: S = x2 + y2.
Cho a, b > 0 và 3a + 5b = 12. Tìm giá trị lớn nhất của tích P = ab.
BÀI 1 : cho x+y=2 ................
GIẢI :
TA CÓ :x2+y2\(\ge\)\(\frac{\left(x+2\right)^2}{2}\)=2
MIN =2 khi x=y=1
BÀI 2: cho a,b>0 và ...........
GIẢI:
12=3a+5b \(\ge\)2\(\sqrt{3a.5b}\)
\(=2\sqrt{15ab}=>ab\le\frac{36}{15}=\frac{12}{15}\)
dấu "=" xảy ra khi 3a=5b,3a+5b=12
<=>a=2,b=6/5
tk mk nha !\(\phi\Phi\alpha\omega\Phi\varepsilon\partial\beta\)
a) Cho a ≥ 0, b ≥ 0. Chứng minh bất đẳng thức Cauchy:
b) Cho a, b, c > 0. Chứng minh rằng:
c) Cho a, b > 0 và 3a + 5b = 12. Tìm giá trị lớn nhất của tích P = ab
\(\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\Leftrightarrow a+b-2\sqrt{ab}\ge0\Leftrightarrow a+b\ge2\sqrt{ab}\Leftrightarrow\frac{a+b}{2}\ge\sqrt{ab}\)
Cho a, b > 0 và 3a + 5b = 12.
Giá trị lớn nhất của biểu thức P = ab là ...........
P = \(\frac{1}{15}\left(3a\right)\left(5b\right)\le\frac{1}{15}\cdot\frac{\left(3a+5b\right)^2}{4}=\frac{12}{5}\)
ta có \(12=3a+5b\ge2\sqrt{3a\cdot5b}=2\sqrt{15ab}\)
==> \(ab\le\frac{36}{15}=\frac{12}{5}\)
dấu '=' xảy ra khi a;b thỏa mãn hệ pt \(3a=5bva3a+5b=12\)
=>a=2; b=6/5
có 1 cách giải đối với các dạng toán tìm min, max vô cùng hay và dễ nhớ, ứng dụng được đối với hầu như các bài toán min,max, muốn biết không
Cho a,b là 2 số duơng thoả mãn điều kiện 3a+5b bằng 12 hãy tìm giá trị lớn nhất của biểu thức D bằng a.b
kết quả của mk là a.b=0 \(\Leftrightarrow a=4;b=0\)