Tìm x bt:
a) 33x+1.5=10935
b) 25x+1.3=6144
c) (2x+3)4=625
d) (3x+1)3=343
phân tích đa thức thành nhân tử
a, 2x^4-5x^3-27x^2 + 25x + 50
b, 3x^4 + 6x^3- 33x^2-24x+48
c, x^4+ 7x^3+14x^2+14x+4
b) 3x4-3x3+9x3-9x2-24x2+24x-48x+48
=3x3(x-1)+9x2(x-1)-24x(x-1)-48(x-1)
=(x-1)(3x3+9x2-24x-48)
=3(x-1)(x3+3x2-8x-16)
Tìm x, biết:
a ) 2 | x | − 1 2 = 3 4 b ) 2 x − 1 3 + 5 6 = 1 c ) 1 2 − 3 x + 4 1 5 = 6 2 5 d ) 17 2 − 2 x − 3 4 = − 7 4
Chú ý rằng |a| = b với b > 0 thì a = b hoặc a = - b.
a ) x ∈ − 5 8 ; 5 8 b ) x ∈ 1 12 ; 1 4
c ) x ∈ − 17 30 ; 9 10 d ) x ∈ − 19 4 ; 11 2
\(\sqrt{\dfrac{x+2}{4}}+\sqrt{25x+50}-2\sqrt{x+2}=14\) ; \(\sqrt{2x+3}=x\) ; \(\sqrt{25x^2+20x+4}=1\) ; \(\sqrt{\dfrac{x+1}{2x-1}}=2\) ; \(\dfrac{\sqrt{x-2}}{\sqrt{3x+1}}=6\)
Tìm x
1) ĐKXĐ: \(x\ge-2\)
\(pt\Leftrightarrow\dfrac{\sqrt{x+2}}{2}+5\sqrt{x+2}-2\sqrt{x+2}=14\)
\(\Leftrightarrow\dfrac{\sqrt{x+2}+6\sqrt{x+2}}{2}=14\Leftrightarrow7\sqrt{x+2}=28\)
\(\Leftrightarrow\sqrt{x+2}=4\Leftrightarrow x+2=16\Leftrightarrow x=14\left(tm\right)\)
2) ĐKXĐ: \(x\ge0\)
\(pt\Leftrightarrow2x+3=x^2\Leftrightarrow\left(x-3\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\left(tm\right)\\x=-1\left(ktm\right)\end{matrix}\right.\)
3) \(pt\Leftrightarrow\sqrt{\left(5x+2\right)^2}=1\Leftrightarrow\left|5x+2\right|=1\)
\(\Leftrightarrow\left[{}\begin{matrix}5x+2=1\\5x+2=-1\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{5}\\x=-\dfrac{3}{5}\end{matrix}\right.\)
4) ĐKXĐ: \(\left[{}\begin{matrix}\left\{{}\begin{matrix}x+1\ge0\\2x-1>0\end{matrix}\right.\\\left\{{}\begin{matrix}x+1\le0\\2x-1< 0\end{matrix}\right.\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x>\dfrac{1}{2}\\x\le-1\end{matrix}\right.\)
\(pt\Leftrightarrow\dfrac{x+1}{2x-1}=4\Leftrightarrow x+1=8x-4\)
\(\Leftrightarrow7x=5\Leftrightarrow x=\dfrac{5}{7}\left(tm\right)\)
5) ĐKXĐ: \(x\ge2\)
\(pt\Leftrightarrow\dfrac{x-2}{3x+1}=36\)
\(\Leftrightarrow x-2=108x+36\Leftrightarrow107x=-38\Leftrightarrow x=-\dfrac{38}{107}\left(ktm\right)\)
Vậy \(S=\varnothing\)
Phân tích đa thức sau thành nhân tử:
a) \(x^4-10x^3-15x^2+20x+4\)
b) \(2x^4-5x^3-27x^2+25x+50\)
c) \(3x^4+6x^3-33x^2-24x+48\)
a) x4 - 10x3 - 15x2 + 20x + 4
= x4 + 2x3 - 12x3 - 24x2 + 9x2 + 18x + 2x + 4
= x3(x + 2) - 12x2(x + 2) + 9x(x + 2) + 2(x + 2)
= (x + 2)(x3 - 12x2 + 9x + 2)
b)
2x4 - 5x3 - 27x2 + 25x + 50
= 2x3(x - 2) - x2(x - 2) - 25x(x - 2) - 25(x - 2)
= (x - 2)(2x3 - x2 - 25x - 25)
c)\(3x^4+6x^3-33x^2-24x+48\)
\(=3\left(x^4+2x^3-11x^2-8x+16\right)\)
\(=3\left(x^4-x^3-4x^2+3x^3-3x^2-12x-4x^2+4x+16\right)\)
\(=3\left(x^2\left(x^2-x-4\right)+3x\left(x^2-x-4\right)-4\left(x^2-x-4\right)\right)\)
\(=3\left(x^2+3x-4\right)\left(x^2-x-4\right)\)
\(=3\left(x^2-x+4x-4\right)\left(x^2-x-4\right)\)
\(=3\left[x\left(x-1\right)+4\left(x-1\right)\right]\left(x^2-x-4\right)\)
\(=3\left(x-1\right)\left(x+4\right)\left(x^2-x-4\right)\)
Tìm x,biết:
a)(1-3x)2-9x(1+x)=-29
b)(2x-1)3-(x-2)2=x(4-25x)-6
\(a,\Rightarrow1-6x+9x^2-9x-9x^2=-29\\ \Rightarrow-15x=-30\Rightarrow x=2\\ b,\Rightarrow8x^3-12x^2+6x-1-x^2+4x-4=4x-25x^2-6\\ \Rightarrow8x^3+12x^2+6x+1=0\\ \Rightarrow\left(2x+1\right)^3=0\\ \Rightarrow2x+1=0\Rightarrow x=-\dfrac{1}{2}\)
Tìm số nguyên x , biết
10 - 2 ( 4 - 3x) = -4
c) -12 + 3(-x + 7 ) = -18
-45 : 5 . (-3 - 2x) = 3
3x - 28 = x +36
(-12)2 . x = 56 + 10 . 13x
a.
\(10-2\left(4-3x\right)=-4\)
\(\Leftrightarrow2\left(4-3x\right)=10+4\)
\(\Leftrightarrow2\left(4-3x\right)=14\)
\(\Leftrightarrow4-3x=7\)
\(\Leftrightarrow3x=-3\)
\(\Leftrightarrow x=-1\)
b.
\(-12+3\left(-x+7\right)=-18\)
\(\Leftrightarrow3\left(-x+7\right)=-18+12=-6\)
\(\Leftrightarrow-x+7=-6:3=-2\)
\(\Leftrightarrow x=9\)
c.
\(-45:5.\left(-3-2x\right)=3\)
\(\Leftrightarrow-9.\left(-3-2x\right)=3\)
\(\Leftrightarrow-3-2x=-\dfrac{1}{3}\)
\(\Leftrightarrow2x=-\dfrac{8}{3}\)
\(\Leftrightarrow x=-\dfrac{4}{3}\notin Z\left(loại\right)\)
Câu này em ghi sai đề?
d.
\(3x-28=x+36\)
\(\Leftrightarrow2x=28+36\)
\(\Leftrightarrow2x=64\)
\(\Leftrightarrow x=32\)
e.
\(\left(-12\right)^2.x=56+10.13x\)
\(\Leftrightarrow144x=56+130x\)
\(\Leftrightarrow144x-130x=56\)
\(\Leftrightarrow14x=56\)
\(\Leftrightarrow x=4\)
tìm x:
1) 25x + 3 ( 4- 6x ) = 50
2) 4 ( 2x + 3 ) + 2 ( 3x + 1) = 120
3) 2 ( 3x + 2 ) + 3 ( 4x + 1 ) = 200
tìm x
1) 25x + 3 ( 4 - 6x ) = 50
2) 4 ( 2x + 3 ) + 2 ( 3x + 1 ) = 120
3) 2 ( 3x + 2 ) + 3 ( 4x + 1 ) = 200
Bài 1: tìm x
1, 2x(3x-1)+1-3x=0
2, x\(^2\)(2x-3)+12-8x=0
3, 25(x-1)\(^2\)-4=0
4, 25x\(^2\)-10x+1=0
5, -4x\(^2\)+\(\dfrac{1}{9}\)=0
6, (x-1)\(^3\)=8
7, (2x-1)\(^3\)+27=0
8, 125+\(\dfrac{1}{8}\)(x-1)\(^3\)=0
5: =>4x^2-1/9=0
=>(2x-1/3)(2x+1/3)=0
=>x=1/6 hoặc x=-1/6
6: =>x-1=2
=>x=3
7:=>(2x-1)^3=-27
=>2x-1=-3
=>2x=-2
=>x=-1
8: =>1/8(x-1)^3=-125
=>(x-1)^3=-1000
=>x-1=-10
=>x=-9
3: =>(5x-5)^2-4=0
=>(5x-7)(5x-3)=0
=>x=3/5 hoặc x=7/5
4: =>(5x-1)^2=0
=>5x-1=0
=>x=1/5
1: =>(3x-1)(2x-1)=0
=>x=1/3 hoặc x=1/2
2: =>x^2(2x-3)-4(2x-3)=0
=>(2x-3)(x^2-4)=0
=>(2x-3)(x-2)(x+2)=0
=>x=3/2;x=2;x=-2
`@` `\text {Answer}`
`\downarrow`
`1,`
\(2x\left(3x-1\right)+1-3x=0\)
`<=> 2x(3x - 1) - 3x + 1 = 0`
`<=> 2x(3x - 1) - (3x - 1) = 0`
`<=> (2x - 1)(3x-1) = 0`
`<=>`\(\left[{}\begin{matrix}2x-1=0\\3x-1=0\end{matrix}\right.\)
`<=>`\(\left[{}\begin{matrix}2x=1\\3x=1\end{matrix}\right.\)
`<=>`\(\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=\dfrac{1}{3}\end{matrix}\right.\)
Vậy, `S = {1/2; 1/3}`
`2,`
\(x^2\left(2x-3\right)+12-8x=0\)
`<=> x^2(2x - 3) - 8x + 12 =0`
`<=> x^2(2x - 3) - (8x - 12) = 0`
`<=> x^2(2x - 3) - 4(2x - 3) = 0`
`<=> (x^2 - 4)(2x - 3) = 0`
`<=>`\(\left[{}\begin{matrix}x^2-4=0\\2x-3=0\end{matrix}\right.\)
`<=>`\(\left[{}\begin{matrix}x^2=4\\2x=3\end{matrix}\right.\)
`<=>`\(\left[{}\begin{matrix}x^2=\left(\pm2\right)^2\\x=\dfrac{3}{2}\end{matrix}\right.\)
`<=>`\(\left[{}\begin{matrix}x=\pm2\\x=\dfrac{3}{2}\end{matrix}\right.\)
Vậy, `S = {+-2; 3/2}`
`3,`
\(25\left(x-1\right)^2-4=0\)
`<=> 25(x-1)(x-1) - 4 = 0`
`<=> 25(x^2 - 2x + 1) - 4 = 0`
`<=> 25x^2 - 50x + 25 - 4 = 0`
`<=> 25x^2 - 15x - 35x + 21 = 0`
`<=> (25x^2 - 15x) - (35x - 21) = 0`
`<=> 5x(5x - 3) - 7(5x - 3) = 0`
`<=> (5x - 7)(5x - 3) = 0`
`<=>`\(\left[{}\begin{matrix}5x-7=0\\5x-3=0\end{matrix}\right.\)
`<=>`\(\left[{}\begin{matrix}5x=7\\5x=3\end{matrix}\right.\)
`<=>`\(\left[{}\begin{matrix}x=\dfrac{7}{5}\\x=\dfrac{3}{5}\end{matrix}\right.\)
Vậy, `S = {7/5; 3/5}`
`4,`
\(25x^2-10x+1=0\)
`<=> 25x^2 - 5x - 5x + 1 = 0`
`<=> (25x^2 - 5x) - (5x - 1) = 0`
`<=> 5x(5x - 1) - (5x - 1) = 0`
`<=> (5x - 1)(5x-1)=0`
`<=> (5x-1)^2 = 0`
`<=> 5x - 1 = 0`
`<=> 5x = 1`
`<=> x = 1/5`
Vậy,` S = {1/5}.`
`@` `\text {Ans}`
`\downarrow`
`5,`
`-4x^2 + 1/9 = 0`
`<=> -4x^2 = 0 - 1/9`
`<=> -4x^2 = -1/9`
`<=> 4x^2 = 1/9`
`<=> x^2 = 1/9 \div 4`
`<=> x^2 = 1/36`
`<=> x^2 = (+-1/6)^2`
`<=> x = +-1/36`
Vậy, `S = {1/36; -1/36}`
`6,`
`(x-1)^3 = 8`
`<=> (x-1)^3 = 2^3`
`<=> x-1=2`
`<=> x = 2 + 1`
`<=> x = 3`
Vậy, `S = {3}`
`7,`
`(2x-1)^3 + 27 = 0`
`<=> (2x - 1)^3 = -27`
`<=> (2x-1)^3 = (-3)^3`
`<=> 2x - 1 = -3`
`<=> 2x = -3 + 1`
`<=> 2x = -2`
`<=> x = -1`
Vậy,` S = {-1}`
`8,`
`125 + 1/8(x-1)^3 = 0`
`<=> 1/8(x-1)^3 = - 125`
`<=> (x-1)^3 = -125 \div 1/8`
`<=> (x-1)^3 = -1000`
`<=> (x-1)^3 = (-10)^3`
`<=> x - 1 = - 10`
`<=> x = -10+1`
`<=> x = -9`
Vậy, `S = {-9}.`
(3x^2-16x) ÷ (-3x) +x(x-4) =-2 (5x^3+20x^2-25x) ÷25x=(x-1) (x+2) (3x+1) ^3=3x+1 x^2-4x+4=9(x-2) Tìm x
d: ta có: \(x^2-4x+4=9\left(x-2\right)\)
\(\Leftrightarrow\left(x-2\right)\left(x-11\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=11\end{matrix}\right.\)