giải pt
\(2cos5x.cos3x+sinx=cos8x\)
1+sin3x.cos3x=sinx+cosx2
1+cos3x=(sinx/2+cosx/2)2
2cos5x.cos3x+sinx=cos8x
Sin (3x-bi/6) +1=2sin2(x/2)
* mọi người có thể giúp mình biến đổi đc không mình biến đổi khônh đc nên làm ko ra :"*(
Câu a tiếp tục ko dịch được đề :)
b.
\(\Leftrightarrow1+cos3x=sin^2\frac{x}{2}+cos^2\frac{x}{2}+2sin\frac{x}{2}.cos\frac{x}{2}\)
\(\Leftrightarrow1+cos3x=1+sinx\)
\(\Leftrightarrow cos3x=sinx\)
\(\Leftrightarrow cos3x=cos\left(\frac{\pi}{2}-x\right)\)
\(\Leftrightarrow...\)
c.
\(\Leftrightarrow cos8x+cos2x+sinx=cos8x\)
\(\Leftrightarrow cos2x+sinx=0\)
\(\Leftrightarrow cos2x=-sinx\)
\(\Leftrightarrow cos2x=cos\left(\frac{\pi}{2}+x\right)\)
\(\Leftrightarrow...\)
d.
\(sin\left(3x-\frac{\pi}{6}\right)=-\left(1-2sin^2\frac{x}{2}\right)\)
\(\Leftrightarrow sin\left(3x-\frac{\pi}{6}\right)=-cosx\)
\(\Leftrightarrow sin\left(3x-\frac{\pi}{6}\right)=sin\left(x-\frac{\pi}{2}\right)\)
\(\Leftrightarrow...\)
Giải các pt:
a) \(cos3x-sinx=\sqrt{3}\left(cosx-sin3x\right)\)
b) \(2cos^2x-3\sqrt{3}sin2x-4sin^2x=-4\)
c) \(\sqrt{3}\left(cos2x+sin3x\right)=sin2x+cos8x\)
d) \(cos2x-\sqrt{3}sin2x=\sqrt{3}sinx+cosx\)
e) \(sin8x-cos6x=\sqrt{3}\left(sin6x+cos8x\right)\)
a/
\(\Leftrightarrow\frac{\sqrt{3}}{2}sin3x+\frac{1}{2}cos3x=\frac{1}{2}sinx+\frac{\sqrt{3}}{2}cosx\)
\(\Leftrightarrow sin\left(3x+\frac{\pi}{6}\right)=sin\left(x+\frac{\pi}{3}\right)\)
\(\Rightarrow\left[{}\begin{matrix}3x+\frac{\pi}{6}=x+\frac{\pi}{3}+k2\pi\\3x+\frac{\pi}{6}=\pi-x-\frac{\pi}{3}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{12}+k\pi\\x=\frac{\pi}{8}+\frac{k\pi}{2}\end{matrix}\right.\)
b/
\(\Leftrightarrow2\left(\frac{1+cos2x}{2}\right)-3\sqrt{3}sin2x-4\left(\frac{1-cos2x}{2}\right)=-4\)
\(\Leftrightarrow3cos2x-3\sqrt{3}sin2x=-3\)
\(\Leftrightarrow\frac{\sqrt{3}}{2}sin2x-\frac{1}{2}cos2x=1\)
\(\Leftrightarrow sin\left(2x-\frac{\pi}{6}\right)=1\)
\(\Leftrightarrow2x-\frac{\pi}{6}=\frac{\pi}{2}+k2\pi\)
\(\Leftrightarrow x=\frac{\pi}{3}+k\pi\)
c/
Ủa đề câu này bạn ghi đúng ko? Nhìn kì kì, cos8x hay cos3x bên vế phải vậy?
d/
\(\Leftrightarrow\frac{1}{2}cos2x-\frac{\sqrt{3}}{2}sin2x=\frac{\sqrt{3}}{2}sinx+\frac{1}{2}cosx\)
\(\Leftrightarrow cos\left(2x+\frac{\pi}{3}\right)=cos\left(x-\frac{\pi}{3}\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+\frac{\pi}{3}=x-\frac{\pi}{3}+k2\pi\\2x+\frac{\pi}{3}=\frac{\pi}{3}-x+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\frac{2\pi}{3}+k2\pi\\x=\frac{k2\pi}{3}\end{matrix}\right.\)
e/
\(\Leftrightarrow\frac{1}{2}sin8x-\frac{\sqrt{3}}{2}cos8x=\frac{\sqrt{3}}{2}sin6x+\frac{1}{2}cos6x\)
\(\Leftrightarrow sin\left(8x-\frac{\pi}{3}\right)=sin\left(6x+\frac{\pi}{6}\right)\)
\(\Rightarrow\left[{}\begin{matrix}8x-\frac{\pi}{3}=6x+\frac{\pi}{6}+k2\pi\\8x-\frac{\pi}{3}=\pi-6x-\frac{\pi}{6}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{4}+k\pi\\x=\frac{\pi}{28}+\frac{k\pi}{7}\end{matrix}\right.\)
giải pt: Sin7x+cos8x=0
Cho phương trình: 2cos5x.cos3x+sinx=cos8xTổng tất cả các nghiệm của phương trình trong khoảng - π 2 ; π 2 là:
A. π 2
B. 3 π 2
C. - π 6
D. 7 π 6
Cho phương trình: 2cos5x.cos3x+sinx=8x. Tổng tất cả các nghiệm của phương trình trong khoảng - π 2 ; π 2 là:
A. π 2
B. 3 π 2
C. - π 6
D. 7 π 6
giải pt: cos3x + cos5x + cos8x +1 =0
help pls :(
\(\Leftrightarrow2cos4x.cosx+2cos^24x-1+1=0\)
\(\Leftrightarrow2cos4x\left(cos4x+cosx\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cos4x=0\\cos4x+cosx=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}cos4x=0\\cos4x=cos\left(\pi-x\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}4x=\frac{\pi}{2}+k\pi\\4x=\pi-x+k2\pi\\4x=x-\pi+k2\pi\end{matrix}\right.\) \(\Leftrightarrow x=...\)
Giải pt
\(cotx-tanx=sinx+cosx\)
\(sinx+cosx+\dfrac{1}{sinx}+\dfrac{1}{cosx}=\dfrac{10}{3}\)
1.
ĐK: \(x\ne\dfrac{k\pi}{2}\)
\(cotx-tanx=sinx+cosx\)
\(\Leftrightarrow\dfrac{cosx}{sinx}-\dfrac{sinx}{cosx}=sinx+cosx\)
\(\Leftrightarrow\dfrac{cos^2x-sin^2x}{sinx.cosx}=sinx+cosx\)
\(\Leftrightarrow\left(\dfrac{cosx-sinx}{sinx.cosx}-1\right)\left(sinx+cosx\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx+cosx=0\left(1\right)\\cosx-sinx=sinx.cosx\left(2\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow\sqrt{2}sin\left(x+\dfrac{\pi}{4}\right)=0\Leftrightarrow x=-\dfrac{\pi}{4}+k\pi\)
\(\left(2\right)\Leftrightarrow t=\dfrac{1-t^2}{2}\left(t=cosx-sinx,\left|t\right|\le2\right)\)
\(\Leftrightarrow t^2+2t-1=0\)
\(\Leftrightarrow\left[{}\begin{matrix}t=-1+\sqrt{2}\\t=-1-\sqrt{2}\left(l\right)\end{matrix}\right.\)
\(\Leftrightarrow cosx-sinx=-1+\sqrt{2}\)
\(\Leftrightarrow-\sqrt{2}sin\left(x-\dfrac{\pi}{4}\right)=-1+\sqrt{2}\)
\(\Leftrightarrow sin\left(x-\dfrac{\pi}{4}\right)=\dfrac{\sqrt{2}-1}{\sqrt{2}}\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{4}+arcsin\left(\dfrac{\sqrt{2}-1}{\sqrt{2}}\right)+k2\pi\\x=\dfrac{5\pi}{4}-arcsin\left(\dfrac{\sqrt{2}-1}{\sqrt{2}}\right)+k2\pi\end{matrix}\right.\)
Vậy phương trình đã cho có nghiệm:
\(x=-\dfrac{\pi}{4}+k\pi;x=\dfrac{\pi}{4}+arcsin\left(\dfrac{\sqrt{2}-1}{\sqrt{2}}\right)+k2\pi;x=\dfrac{5\pi}{4}-arcsin\left(\dfrac{\sqrt{2}-1}{\sqrt{2}}\right)+k2\pi\)
giải các phương trình sau: ( pt bậc nhất đối với sinx và cosx)
a, \(sinx+cosx=\sqrt{2}sin5x\)
b, \(\sqrt{3}sin2x+sin\left(\frac{\pi}{2}+2x\right)=1\)
c, \(\left(\sqrt{3}-1\right)sinx+\left(\sqrt{3}+1\right)cosx+\sqrt{3}-1=0\)
d, \(3sin^2x+\sqrt{3}sin2x=3\)
e, \(sin8x-cos6x=\sqrt{3}\left(sin6x+cos8x\right)\)
f,\(8cos2x=\frac{\sqrt{3}}{sinx}+\frac{1}{cosx}\)
g, \(cosx-\sqrt{3}sinx=2cos\left(\frac{\pi}{3}-x\right)\)
h, \(sin5x-cos5x=\sqrt{2}cos13x\)
i, \(\left(3cosx-4sinx+6\right)^2-9cosx+12sinx-16=0\)
\( a){\mathop{\rm sinx}\nolimits} + \cos x = \sqrt 2 \sin 5x\\ \Leftrightarrow \sqrt 2 .\sin \left( {x + \dfrac{\pi }{4}} \right) = \sqrt 2 .\sin 5x\\ \Leftrightarrow \sin \left( {x + \dfrac{\pi }{4}} \right) = \sin 5x\\ \Leftrightarrow \left[ \begin{array}{l} x + \dfrac{\pi }{4} = 5x + k2\pi \\ x + \dfrac{\pi }{4} = \pi - 5x + k2\pi \end{array} \right.\left( {k \in \mathbb {Z}} \right)\\ \Leftrightarrow \left[ \begin{array}{l} x = \dfrac{\pi }{{16}} + \dfrac{{k\pi }}{2}\\ x = \dfrac{\pi }{8} + \dfrac{{k\pi }}{3} \end{array} \right.\left( {k \in \mathbb{Z}} \right) \)
\( b)\sqrt 3 \sin 2x + \sin \left( {\dfrac{\pi }{2} + 2x} \right) = 1\\ \Leftrightarrow \sqrt 3 \sin 2x + \sin \dfrac{\pi }{2}\cos 2x + \cos \dfrac{\pi }{2}\sin 2x = 1\\ \Leftrightarrow \sqrt 3 \sin 2x + 1.\cos 2x + 0.\sin 2x = 1\\ \Leftrightarrow \sqrt 3 \sin 2x + \cos 2x - 1 = 0\\ \Leftrightarrow 2\sqrt 3 {\mathop{\rm sinxcosx}\nolimits} + 1 - 2{\sin ^2}x - 1 = 0\\ \Leftrightarrow \sqrt 3 {\mathop{\rm sinxcosx}\nolimits} - si{n^2}x = 0\\ \Leftrightarrow {\mathop{\rm sinx}\nolimits} \left( {\sqrt 3 \cos x - {\mathop{\rm sinx}\nolimits} } \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l} {\mathop{\rm sinx}\nolimits} = 0\\ \sqrt 3 \cos x - {\mathop{\rm sinx}\nolimits} = 0 \end{array} \right. \Leftrightarrow \left[ \begin{array}{l} x = k\pi \\ \sin \left( {\dfrac{\pi }{3} - x} \right) = 0 \end{array} \right. \Leftrightarrow \left[ \begin{array}{l} x = k\pi \\ \dfrac{\pi }{3} - x = k\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l} x = k\pi \\ x = \dfrac{\pi }{3} - k\pi \end{array} \right. \)
Nhiều quá @@ Tách ra đi ><
\( d)3{\sin ^2}x + \sqrt 3 \sin 2x = 3\\ \Leftrightarrow 2{\sin ^2}x + 2\sqrt 3 {\mathop{\rm sinxcosx}\nolimits} - 3 = 0\\ *sinx = 0 \Rightarrow \text{không là nghiệm phương trình}\\ *sin \ne 0\\ 2 + 2\sqrt 3 \cot x - 3\left( {1 + {{\cot }^2}x} \right) = 0\\ \Leftrightarrow 3{\cot ^2}x - 2\sqrt 3 \cot x + 1 = 0\\ \Leftrightarrow \cot x = \dfrac{{\sqrt 3 }}{3} \Rightarrow x = \dfrac{\pi }{3} + k\pi \)
giải các phương trình sau:
1) \(\left(\sqrt{3}-1\right)sinx-\left(\sqrt{3}+1\right)cosx=1-\sqrt{3}\)
2) \(sin8x-cos6x=\sqrt{3}\left(sin6x+cos8x\right)\)
3) \(sinx+cosx=2\sqrt{2}sinx.cosx\)
4) \(2sin^2x+\sqrt{3}sin2x=3\)