Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Ly Ly
Xem chi tiết
Lê Thị Thục Hiền
5 tháng 7 2021 lúc 16:23

a) Pt \(\Leftrightarrow\sqrt{\left(x-2\right)^2}=5\Leftrightarrow\left|x-2\right|=5\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=5\\x-2=-5\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=7\\x=-3\end{matrix}\right.\)

Vậy...

b)Đk: \(x\ge-1\)

Pt \(\Leftrightarrow4\sqrt{x+1}-3\sqrt{x+1}+2\sqrt{x+1}=16-\sqrt{x+1}\)

\(\Leftrightarrow4\sqrt{x+1}=16\)\(\Leftrightarrow x+1=16\)\(\Leftrightarrow x=15\) (tm)

Vậy...

\(A=\dfrac{a^2+\sqrt{a}}{a-\sqrt{a}+1}-\dfrac{2a+\sqrt{a}}{\sqrt{a}}+1\) (a>0)

\(=\dfrac{\sqrt{a}\left(\sqrt{a}+1\right)\left(a-\sqrt{a}+1\right)}{a-\sqrt{a}+1}-\dfrac{\sqrt{a}\left(2\sqrt{a}+1\right)}{\sqrt{a}}+1\)

\(=a+\sqrt{a}-\left(2\sqrt{a}+1\right)+1=a-\sqrt{a}\)

b) \(A=a-\sqrt{a}=a-2.\dfrac{1}{2}\sqrt{a}+\dfrac{1}{4}-\dfrac{1}{4}=\left(\sqrt{a}-\dfrac{1}{2}\right)^2-\dfrac{1}{4}\ge-\dfrac{1}{4}\)

Dấu "=" xảy ra khi \(\sqrt{a}=\dfrac{1}{2}\Leftrightarrow a=\dfrac{1}{4}\left(tmđk\right)\) 

Vậy \(A_{min}=-\dfrac{1}{4}\)

An Thy
5 tháng 7 2021 lúc 16:25

a) \(\sqrt{x^2-4x+4}=5\Rightarrow\sqrt{\left(x-2\right)^2}=5\Rightarrow\left|x-2\right|=5\)

\(\Rightarrow\left[{}\begin{matrix}x-2=5\\x-2=-5\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=7\\x=-3\end{matrix}\right.\)

b) \(\sqrt{16x+16}-3\sqrt{x+1}+\sqrt{4x+4}=16-\sqrt{x+1}\)

\(\Rightarrow\sqrt{16\left(x+1\right)}-3\sqrt{x+1}+\sqrt{4\left(x+1\right)}+\sqrt{x+1}=16\)

\(\Rightarrow4\sqrt{x+1}-3\sqrt{x+1}+2\sqrt{x+1}+\sqrt{x+1}=16\)

\(\Rightarrow4\sqrt{x+1}=16\Rightarrow\sqrt{x+1}=4\Rightarrow x=15\)

a) \(A=\dfrac{a^2+\sqrt{a}}{a-\sqrt{a}+1}-\dfrac{2a+\sqrt{a}}{\sqrt{a}}+1\)

\(=\dfrac{\sqrt{a}\left(\sqrt{a}+1\right)\left(a-\sqrt{a}+1\right)}{a-\sqrt{a}+1}-\dfrac{\sqrt{a}\left(2\sqrt{a}+1\right)}{\sqrt{a}}+1\)

\(=a+\sqrt{a}-2\sqrt{a}-1+1=a-\sqrt{a}\)

b) Ta có: \(a-\sqrt{a}=\left(\sqrt{a}\right)^2-2.\sqrt{a}.\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2-\dfrac{1}{4}\)

\(=\left(\sqrt{a}-\dfrac{1}{2}\right)^2-\dfrac{1}{4}\ge-\dfrac{1}{4}\)

\(\Rightarrow A_{min}=-\dfrac{1}{4}\) khi \(a=\dfrac{1}{4}\)

loann nguyễn
5 tháng 7 2021 lúc 16:42

✱ giải pt:

a.\(\sqrt{x^2-4x+4}\)\(=5\)

\(\sqrt{\left(x-2\right)^2}=5\)

\(\left[{}\begin{matrix}x-2=5\\x-2=-5\end{matrix}\right.\) ⇔\(\left[{}\begin{matrix}x=3\\x=-3\end{matrix}\right.\)

vậy....

b.\(\sqrt{16x+16}-3\sqrt{x+1}+\sqrt{4x+4}=16-\sqrt{x+1}\)

⇔ \(4\sqrt{x+1}-3\sqrt{x+1}+2\sqrt{x+1}+\sqrt{x+1}=16\)

⇔ \(4\sqrt{x+1}=16\)

⇔ \(\sqrt{x+1}=16\)

⇒ \(x+1=256\)

⇔ \(x=255\)

vậy.....

 

Hoài Thu Vũ
Xem chi tiết
HT.Phong (9A5)
8 tháng 7 2023 lúc 17:46

a) \(\sqrt{9a^4}=\sqrt{\left(3a^2\right)^2}=\left|3a^2\right|=3a^2\)

b) \(2\sqrt{a^2}-5a=2\left|a\right|-5a=-2a-5a=-7a\)

c) \(\sqrt{16\left(1+4x+4x^2\right)}=\sqrt{\left[4\left(1+2x\right)\right]^2}=\left|4\left(1+2x\right)\right|=4\left(1+2x\right)\)

 

Quỳnh Anh Nguyễn Thị
Xem chi tiết
Như
Xem chi tiết
thuthao pham
Xem chi tiết
๖ACE✪Hoàngミ★Việtツ
17 tháng 9 2017 lúc 9:26

a)\(A=2x+\sqrt{1-4x+4x^2}\)

\(A=2x+\sqrt{\left(1-2x\right)^2}\)

\(A=2x+\left|1-2x\right|\)

\(A=2x+\left|2x-1\right|\)

\(A=4x-1\)

b)\(x=\frac{1}{4}\Leftrightarrow A=4.\frac{1}{4}-1\)

\(\Leftrightarrow A=-1\)

Doraemon
26 tháng 7 2018 lúc 11:35

a) \(A=2x+\sqrt{1-4x+4x^2}\)

\(A=2x+\sqrt{\left(1-2x\right)^2}\)

\(A=2x+|1-2x|\)

\(A=2x+|2x-1|\)

\(A=4x-1\)

b) \(x=\frac{1}{4}\Leftrightarrow A=4.\frac{1}{4}-1\)

\(\Leftrightarrow A=-1\)

Nguyễn Thị Ngọc Trinh
Xem chi tiết
♊Ngọc Hân♊
Xem chi tiết
Lấp La Lấp Lánh
15 tháng 12 2021 lúc 20:21

1) Áp dụng HTL:

\(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}=\dfrac{1}{4^2}+\dfrac{1}{\left(4\sqrt{2}\right)^2}=\dfrac{3}{32}\Rightarrow AH=\dfrac{4\sqrt{6}}{3}\left(cm\right)\)

Áp dụng đ/lý Pytago:

\(BC^2=AB^2+AC^2\Rightarrow BC=\sqrt{AB^2+AC^2}=\sqrt{4^2+\left(4\sqrt{2}\right)^2}=4\sqrt{3}\left(cm\right)\)

Bài 2:

a) \(pt\Leftrightarrow\sqrt{\left(2x+1\right)^2}=3\Leftrightarrow\left|2x+1\right|=3\)

\(\Leftrightarrow\left[{}\begin{matrix}2x+1=3\\2x+1=-3\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)

b) \(A=\left(\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}+1}+\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}-1}\right).\dfrac{\sqrt{x}+1}{\sqrt{x}}\)

\(=2\sqrt{x}.\dfrac{\sqrt{x}+1}{\sqrt{x}}=2\sqrt{x}+2\)

Kha Diệp
Xem chi tiết
Nguyễn Minh Quang
28 tháng 1 2021 lúc 11:45

\(A=1-\left(\frac{2}{1+2\sqrt{x}}-\frac{5\sqrt{x}}{4x-1}-\frac{1}{1-2\sqrt{x}}\right):\frac{\sqrt{x}-1}{4x+4\sqrt{x}+1}\)

\(=1-\left(\frac{2\left(1-2\sqrt{x}\right)+5\sqrt{x}-1-2\sqrt{x}}{\left(1+2\sqrt{x}\right)\left(1-2\sqrt{x}\right)}\right):\frac{\sqrt{x}-1}{\left(1+2\sqrt{x}\right)^2}\)

\(=1-\frac{1-\sqrt{x}}{\left(1+2\sqrt{x}\right)\left(1-2\sqrt{x}\right)}.\frac{\left(1+2\sqrt{x}\right)^2}{\sqrt{x}-1}=1-\frac{1+2\sqrt{x}}{1-2\sqrt{x}}=2-\frac{2}{1-2\sqrt{x}}\)

để A là số nguyên thì \(1-2\sqrt{x}\) là ước của 2 khi đó ta tìm được \(\orbr{\begin{cases}x=0\\x=1\end{cases}}\)

Khách vãng lai đã xóa
Oriana.su
Xem chi tiết
ミ★ήɠọς τɾίếτ★彡
8 tháng 7 2021 lúc 14:24

a.

\(B=\sqrt{16x+16}-\sqrt{9x+9}+\sqrt{4x+4}+\sqrt{x+1}\left(x\ge-1\right)\)

\(B=\sqrt{16}.\sqrt{x+1}-\sqrt{9}.\sqrt{x+1}+\sqrt{4}.\sqrt{x+1}+\sqrt{x+1}\)

\(B=4\sqrt{x+1}-3\sqrt{x+1}+2\sqrt{x+1}+\sqrt{x+1}\)

\(B=\left(4-3+2+1\right).\sqrt{x+1}\)

\(B=4.\sqrt{x+1}\)

b.

\(B=16\\\)

\(\Rightarrow4\sqrt{x+1}=16\)

\(\Rightarrow\sqrt{x+1}=\dfrac{16}{4}=4\)

\(\Rightarrow x+1=4^2\)

\(\Rightarrow x+1=16\rightarrow x=16-1=15\) (thỏa mãn)

vậy x=15