Giai pt \(\sqrt{x-2}+\sqrt{4-x}=2x^2-5x+1\)
giai pt sau
\(\sqrt{3x-1}-\sqrt{x+2}.\sqrt{3x^2+7x+2}+4=4x-2\)
\(x^2-5x+3.\sqrt{2x-1}=2.\sqrt{14-2x}+5\)
\(\left(x+1\right)\left(x+4\right)-3\sqrt{x^2+5x+2}=6\)
nhiều thế giải ko đổi đâu bạn
đkxđ : \(\frac{1}{2}\le x\le7\)
\(x^2-5x+3\sqrt{2x-1}=2\sqrt{14-2x}+5\)
\(\Leftrightarrow\left(x^2-5x\right)+3\left(\sqrt{2x-1}-3\right)=2\left(\sqrt{14-2x}-2\right)\)
\(\Leftrightarrow x\left(x-5\right)+\frac{3.\left(2x-10\right)}{\sqrt{2x-1}+3}+\frac{2.\left(2x-10\right)}{\sqrt{14-2x}+2}=0\)
\(\Leftrightarrow\left(x-5\right)\left(x+\frac{6}{\sqrt{2x-1}+3}+\frac{4}{\sqrt{14-2x}+2}\right)=0\)
\(\Leftrightarrow x=5\)
còn bài a,c lười đánh lắm
Giai pt \(a,4\sqrt{x+1}=x^2+5x+4\)
\(b,\sqrt{4x+1}-\sqrt{3x-2}=\frac{x+3}{5}\)
\(c,2x^2-5x+5=\sqrt{5x-1}\)
a/ Dặt \(\sqrt{x+1}=a\ge0\)
\(\Rightarrow4\sqrt{x+1}=x^2+5x+4\)
\(\Leftrightarrow4\sqrt{x+1}=\left(x+1\right)^2+3\left(x+1\right)\)
\(\Leftrightarrow4a=a^4+3a^2\)
\(\Leftrightarrow a\left(a-1\right)\left(a^2+a+4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}a=0\\a=1\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x+1}=0\\\sqrt{x+1}=1\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-1\\x=0\end{cases}}\)
b/ Đặt \(\hept{\begin{cases}\sqrt{4x+1}=a\ge0\\\sqrt{3x-2}=b\ge0\end{cases}}\)
\(\Rightarrow a^2-b^2=x+3\)
Từ đây ta có:
\(a-b=\frac{a^2-b^2}{5}\)
\(\Leftrightarrow\left(a-b\right)\left(5-a-b\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}a=b\left(1\right)\\a+b=5\left(2\right)\end{cases}}\)
Thế vô làm tiếp
c/
\(2x^2-5x+5=\sqrt{5x-1}\)
\(\Leftrightarrow\left(2x^2-5x+5\right)^2=5x-1\)
\(\Leftrightarrow4x^4-20x^3+45x^2-55x+26=0\)
\(\Leftrightarrow\left(x^2-3x+2\right)\left(4x^2-8x+13\right)=0\)
Làm nốt
giai pt: \(5x+19=2\sqrt{x-1}+4\sqrt{x+2}+6\sqrt{2x+5}\)
giai cac phuong trinh
a)\(2x^4+5x^3+x^2+5x+2=0\)
b)\(\sqrt{x-1}-\sqrt[3]{2-x}=1\)
c)\(x-\sqrt{x}+1=\sqrt{2x^2-30x+2}\)
d)\(2x^2+3x+7=\left(x-5\right)\sqrt{2x^2+1}\)
e)\(\sqrt{x-2}+\sqrt{4-x}=2x^2-5x-1\)
GIẢI CÁC PT SAU:
\(\sqrt{x^2+5x+1}=\sqrt{x+1}\)
\(\sqrt{x^2+2x+4}=\sqrt{2-x}\)
\(\sqrt{2x+4}-\sqrt{2-x}=0\)
Lời giải:
1. ĐKXĐ: $x\geq \frac{-5+\sqrt{21}}{2}$
PT $\Leftrightarrow x^2+5x+1=x+1$
$\Leftrightarrow x^2+4x=0$
$\Leftrightarrow x(x+4)=0$
$\Rightarrow x=0$ hoặc $x=-4$
Kết hợp đkxđ suy ra $x=0$
2. ĐKXĐ: $x\leq 2$
PT $\Leftrightarrow x^2+2x+4=2-x$
$\Leftrightarrow x^2+3x+2=0$
$\Leftrightarrow (x+1)(x+2)=0$
$\Leftrightarrow x+1=0$ hoặc $x+2=0$
$\Leftrightarrow x=-1$ hoặc $x=-2$
3.
ĐKXĐ: $-2\leq x\leq 2$
PT $\Leftrightarrow \sqrt{2x+4}=\sqrt{2-x}$
$\Leftrightarrow 2x+4=2-x$
$\Leftrightarrow 3x=-2$
$\Leftrightarrow x=\frac{-2}{3}$ (tm)
Bài 1 Giai pt
\(a,2x^2+2x+1=\sqrt{4x+1}\)
\(b,x^2-6x+26=6\sqrt{2x+1}\)
\(c,4\sqrt{x+1}=x^2-5x+4\)
\(d,x^2+2015x-2014=2\sqrt{2017x-2016}\)
\(e,\sqrt{4x+1}-\sqrt{3x-2}=\frac{x+3}{5}\)
\(f,2x^2-5x+5=\sqrt{5x-1}\)
Ko chắc nhá, lúc làm chả biết có tính nhầm chỗ nào ko nữa:) Vả lại bài này chưa khảo lại bài đâu đấy, lười khảo lại lắm, đăng lên luôn.
a) ĐK: \(x\ge-\frac{1}{4}\)
PT \(\Leftrightarrow4x^2+4x+1-2\sqrt{4x+1}+1=0\)
\(\Leftrightarrow4x^2+\left(\sqrt{4x+1}-1\right)^2=0\)
b) ĐK: \(x\ge-\frac{1}{2}\)
PT \(\Leftrightarrow\left(x^2-8x+16\right)+2x+1-6\sqrt{2x+1}+9=0\)
\(\Leftrightarrow\left(x-4\right)^2+\left(\sqrt{2x+1}-3\right)^2=0\)
c) ĐK: \(x\ge-1\)
PT có một nghiệm xấu @@ chưa nghĩ ra, có lẽ phải dùng liên hợp.
d) Số bự quá:( Nhưng thôi vì nghiệm đẹp nên vẫn làm:D
\(PT\Leftrightarrow\left(x^2-2x+1\right)+\left(2017x-2016-2\sqrt{2017x-2016}+1\right)=0\)
\(\Leftrightarrow\left(x-1\right)^2+\left(\sqrt{2017x-2016}-1\right)^2=0\)
e)Nghiệm đẹp nhưng dạng phân thức -> ko muốn làm:D
f) Liên hợp đi cho nó khỏe:v
f) Liên hợp đi cho nó khỏe:D
ĐK: \(x\ge\frac{1}{5}\)
PT \(\Leftrightarrow2x^2-6x+4+\left(x+1\right)-\sqrt{5x-1}=0\)
\(\Leftrightarrow2\left(x-2\right)\left(x-1\right)+\frac{\left(x-2\right)\left(x-1\right)}{x+1+\sqrt{5x-1}}=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-1\right)\left[2+\frac{1}{x+1+\sqrt{5x-1}}\right]=0\)
Cái ngoặc to nhìn liếc qua một phát cũng thấy nó vô nghiệm.
giải pt \(\sqrt{x-2}+\sqrt{4-x}+\sqrt{2x-5}=2x^2-5x\)
2) \(x^2+x+2=\sqrt{5x+5}+\sqrt{3x+2}\)
giải pt :
a) \(\sqrt{x-1}+\sqrt{x^3+x^2+x+1}=1+\sqrt{x^4-1}\)
b0 \(4\sqrt{x+1}=x^2-5x+14\)
c) \(2x+3\sqrt{4-5x}+\sqrt{x+2}=8\)
d) \(\dfrac{x^2+x}{\sqrt{x^2+x+1}}=\dfrac{2-x}{\sqrt{x-1}}\)
a.
ĐKXĐ: \(x\ge1\)
\(\sqrt{x-1}+\sqrt{x^3+x^2+x+1}=1+\sqrt{\left(x-1\right)\left(x^3+x^2+x+1\right)}\)
\(\Leftrightarrow\sqrt{x-1}\left(\sqrt{x^3+x^2+x+1}-1\right)-\left(\sqrt{x^3+x^2+x+1}-1\right)=0\)
\(\Leftrightarrow\left(\sqrt{x-1}-1\right)\left(\sqrt{x^3+x^2+x+1}-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-1}=1\\\sqrt{x^3+x^2+x+1}=1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x^3+x^2+x=0\end{matrix}\right.\)
\(\Leftrightarrow...\)
b.
ĐKXĐ: \(x\ge-1\)
\(x^2-6x+9+x+1-4\sqrt{x+1}+4=0\)
\(\Leftrightarrow\left(x-3\right)^2+\left(\sqrt{x+1}-2\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-3=0\\\sqrt{x+1}-2=0\end{matrix}\right.\)
\(\Leftrightarrow x=3\)
c.
ĐKXĐ: \(-2\le x\le\dfrac{4}{5}\)
\(VT=2x+3\sqrt{4-5x}+1.\sqrt{x+2}\)
\(VT\le2x+\dfrac{1}{2}\left(9+4-5x\right)+\dfrac{1}{2}\left(1+x+2\right)=8\)
Dấu "=" xảy ra khi và chỉ khi \(x=-1\)
d.
ĐKXĐ: \(x>1\)
\(\Leftrightarrow\dfrac{x^2+x+1-1}{\sqrt{x^2+x+1}}=\dfrac{1-\left(x-1\right)}{\sqrt{x-1}}\)
Đặt \(\left\{{}\begin{matrix}\sqrt{x^2+x+1}=a>0\\\sqrt{x-1}=b>0\end{matrix}\right.\)
\(\Rightarrow\dfrac{a^2-1}{a}=\dfrac{1-b^2}{b}\)
\(\Leftrightarrow a-\dfrac{1}{a}=\dfrac{1}{b}-b\)
\(\Leftrightarrow a+b-\dfrac{a+b}{ab}=0\)
\(\Leftrightarrow\left(a+b\right)\left(1-\dfrac{1}{ab}\right)=0\)
\(\Leftrightarrow1-\dfrac{1}{ab}=0\)
\(\Leftrightarrow ab=1\)
\(\Leftrightarrow\left(x-1\right)\left(x^2+x+1\right)=1\)
\(\Leftrightarrow x^3-1=1\)
\(\Leftrightarrow x=\sqrt[3]{2}\)
Giải pt
\(\sqrt{x-2}+\sqrt{4-x}=2x^2-5x-1\)