/x-3/-2x+\(\frac{1}{2}\)/=0
a) (x-5).(x-1) > 0
b) (2x-3).(x+1) < 0
c) \(2x^2-3x+1>0\)
d) \(\frac{3x-2}{x-2}>0\)
e) \(\frac{3x-1}{2x-3}< \frac{3}{2}\)
f) \(\frac{x-5}{x^2+1}< 0\)
g) \(\frac{2x-1}{5x-1}< \frac{2}{5}\)
a, (x-5).(x-1) >0
<=> x-5>0 và x-1>0
<=> x-5>0
<=> x>5
x-1>0
<=> x>1
Vậy x>5
b, (2x-3).(x+1) <0
<=> 2x-3<0 và x+1<0
2x-3<0 <=> 2x<3 <=> x<2/3
x+1<0 <=> x<-1
Vậy x<2/3
c, 2x2 - 3x +1>0
<=> 2x2 - 2x- x +1>0
<=>(x-1). (2x-1) >0
<=> x-1>0 và 2x-1>0
x-1>0 <=> x>1
2x-1>0 <=> 2x>1 <=> x>1/2
Vậy x>1/2
giúp mik vs mai mik kiểm tra rùi
a) $\frac{x-1}{x}$ - $\frac{1}{x+1}$ = $\frac{2x-1}{x2+x}$
b) (x+2).(5-3x)=0
c)$\frac{5(1-2x)}{3}$ + $\frac{x}{2}$ = $\frac{3(x-5)}{4}$ - 2
d)$(x+2)^{2}$ - (x-1).(x+3) = (2x-4).(x+4)-3
e)$(2x-3)^{2}$ = (2x-3).(x+1)
a:=>x^2-1-x=2x-1
=>x^2-x-1=2x-1
=>x^2-3x=0
=>x=0(loại) hoặc x=3(nhận)
b:=>x+2=0 hoặc 5-3x=0
=>x=-2 hoặc x=5/3
c:=>20(1-2x)+6x=9(x-5)-24
=>20-40x+6x=9x-45-24
=>-34x+20=9x-69
=>-43x=-89
=>x=89/43
d: =>x^2+4x+4-x^2-2x+3=2x^2+8x-4x-16-3
=>2x^2+4x-19=-2x+7
=>2x^2+6x-26=0
=>x^2+3x-13=0
=>\(x=\dfrac{-3\pm\sqrt{61}}{2}\)
e: =>(2x-3)(2x-3-x-1)=0
=>(2x-3)(x-4)=0
=>x=4 hoặc x=3/2
\(1.\frac{1}{x^2-2x+2}+\frac{2}{x^2-2x+3}=\frac{6}{x^2-2x+4}
\)
2.\(\frac{2x^4}{\left(x+1\right)^2}-\frac{5x^2}{x+1}+2=0\)
3.\(\left(x+\frac{1}{x}\right)^2-6\left(x+\frac{1}{x}\right)+8=0\)
4.\(\left(x^2+\frac{1}{x^2}\right)-4\left(x+\frac{1}{x}\right)+6=0\)
5.\(\frac{2x}{3x^2-x+2}-\frac{7x}{3x^2+5x+2}=1\)
bài 1: giải các bất phương trình sau:
1) (x-3)(4-x)≥0
2) \(\frac{1+2x}{3x-4}< 0\)
3) (x+1)(x-1)(3x-6)>0
4) 3x(2x+7)(9-3x)≥0
5) \(\frac{\left(2x-5\right)\left(x+2\right)}{-4x+3}>0\)
6) \(\frac{2}{x-1}\le\frac{5}{2x-1}\)
7) \(\frac{x-3}{x+1}>\frac{x+5}{x-2}\)
8) \(\frac{2x^2+x}{1-2x}\ge1-x\)
giải ác phương trình sau:
1)\(\frac{x+2}{2x-4}-\frac{4x}{x^2-4}=0\)
2)\(\frac{x}{x-1}-\frac{5x-3}{x^2-1}=0\)
3)\(\frac{1}{x-3}-\frac{4}{x+3}=\frac{3x}{9-x^2}\)
4)\(\frac{1}{2x-3}-\frac{3}{x\left(2x-3\right)}=\frac{5}{x}\)
5)\(\frac{-3}{2x}-\frac{x+1}{x+2}=\frac{-3}{x\left(x+2\right)}\)
6)\(\frac{x+2}{x-2}-\frac{1}{x}=\frac{2}{x^2-2x}\)
1, Đk x≠2;-2
\(\frac{x+2}{2x-4}-\frac{4x}{x^2-4}=0\\ =>\frac{x+2}{2\left(x-2\right)}-\frac{4x}{\left(x-2\right).\left(x+2\right)}=0\\ =>\frac{\left(x+2\right)^2}{2\left(x^2-4\right)}-\frac{8x}{2\left(x-2\right).\left(x+2\right)}=0\\ =>\frac{x^2+4x+4-8x}{2\left(x-2\right)\left(x+2\right)}=0\\ =>\frac{x^2-4x+4}{2\left(x-2\right)\left(x+2\right)}=0\\ =>\frac{x-2}{2\left(x+2\right)}=0\\ =>x-2=0\\ =>x=2\left(loại\right)\)
Bài 1:Giải Phương trình:
a) \(\frac{x-1}{x}+\frac{1-2x}{x^2+x}=\frac{1}{x+1}\)
b)\(\frac{13}{\left(x-3\right).\left(2x+7\right)}+\frac{1}{2x+7}=\frac{6}{x^2-9}\)
c) \(\frac{x}{x-1}-\frac{2x}{x^2-1}=0\)
d)\(\frac{x^2+2x}{x^2+1}-2x=0\)
Bài 2: Giải phương trình (x –1)(x2 +3x –2 ) – (x3 –1) =0
Bài 3: Giải phương trình (x –1)(x2 +3x –2 ) – (x3 –1) =0
Bài 4:
Bằng cách phân tích vế trái thành nhân tử rồi giải các phương tr ình sau:
a) 2x(x – 3) +5(x – 3) = 0
b) (x2 – 4) +(x –2)(3 –2x ) = 0
c) x3 –3x2 + 3x – 1 = 0
d) x(2x –7) – 4x + 14 = 0
Bài 1: Giải pt:
a) \(\frac{x-1}{x}+\frac{1-2x}{x^2+x}=\frac{1}{x+1}\)
b)\(\frac{13}{\left(x-3\right).\left(2x+7\right)}+\frac{1}{2x+7}=\frac{6}{x^2-9}\)
c) \(\frac{x}{x-1}-\frac{2x}{x^2-1}=0\)
d)\(\frac{x^2+2x}{x^2+1}-2x=0\)
Bài 2: Giải phương trình (x –1)(x2 +3x –2 ) – (x3 –1) =0
Bài 3: Giải phương trình (x3 + x2 )+(x2 + x) = 0
Bài 4: Bằng cách phân tích vế trái thành nhân tử rồi giải các phương tr ình sau:
a) 2x(x – 3) +5(x – 3) = 0
b) (x2 – 4) +(x –2)(3 –2x ) = 0
c) x3 –3x2 + 3x – 1 = 0
d) x(2x –7) – 4x + 14 = 0
bài 1:
a) ĐKXĐ: x khác 0; x khác -1
\(\frac{x-1}{x}+\frac{1-2x}{x^2+x}=\frac{1}{x+1}\)
<=> \(\frac{x-1}{x}+\frac{1-2x}{x\left(x+1\right)}=\frac{1}{x+1}\)
<=> (x - 1)(x + 1) + 1 - 2x = x
<=> x^2 - 2x = x
<=> x^2 - 2x - x = 0
<=> x^2 - 3x = 0
<=> x(x - 3) = 0
<=> x = 0 hoặc x - 3 = 0
<=> x = 0 hoặc x = 0 + 3
<=> x = 0 (ktm) hoặc x = 3 (tm)
=> x = 3
b) ĐKXĐ: x khác +-3; x khác -7/2
\(\frac{13}{\left(x-3\right)\left(2x+7\right)}+\frac{1}{2x+7}=\frac{6}{x^2-9}\)
<=> \(\frac{13}{\left(x-3\right)\left(2x+7\right)}+\frac{1}{2x+7}=\frac{6}{\left(x-3\right)\left(x+3\right)}\)
<=> 13(x + 3) + (x - 3)(x + 3) = 6(2x + 7)
<=> 13x + 30 + x^2 = 12x + 42
<=> 13x + 30 + x^2 - 12x - 42 = 0
<=> x - 12 + x^2 = 0
<=> (x - 3)(x + 4) = 0
<=> x - 3 = 0 hoặc x + 4 = 0
<=> x = 0 + 3 hoặc x = 0 - 4
<=> x = 3 (ktm) hoặc x = -4 (tm)
=> x = -4
c) ĐKXĐ: x khác +-1
\(\frac{x}{x-1}-\frac{2x}{\left(x-1\right)\left(x+1\right)}=0\)
<=> x(x + 1) - 2x = 0
<=> x^2 + x - 2x = 0
<=> x^2 - x = 0
<=> x(x - 1) = 0
<=> x = 0 hoặc x - 1 = 0
<=> x = 0 hoặc x = 0 + 1
<=> x = 0 (tm) hoặc x = 1 (ktm)
=> x = 0
d) \(\frac{x^2+2x}{x^2+1}-2x=0\)
<=> \(\frac{x\left(x+2\right)}{x^2+1}-2x=0\)
<=> x(x + 2) - 2x(x^2 + 1) = 0
<=> x^2 - 2x^3 = 0
<=> x^2(1 - 2x) = 0
<=> x^2 = 0 hoặc 1 - 2x = 0
<=> x = 0 hoặc -2x = 0 - 1
<=> x = 0 hoặc -2x = -1
<=> x = 0 hoặc x = 1/2
bài 2:
(x - 1)(x^2 + 3x - 2) - (x^3 - 1) = 0
<=> x^3 + 3x^2 - 2x - x^2 - 3x + 2 - x^2 + 1 = 0
<=> 2x^2 - 2x - 3x + 3 = 0
<=> 2x(x - 1) - 3(x - 1) = 0
<=> (2x - 3)(x - 1) = 0
<=> 2x - 3 = 0 hoặc x - 1 = 0
<=> 2x = 0 + 3 hoặc x = 0 + 1
<=> 2x = 3 hoặc x = 1
<=> x = 3/2 hoặc x = 1
bài 3:
(x^3 + x^2) + (x^2 + x) = 0
<=> x^3 + x^2 + x^2 + x = 0
<=> x^3 + 2x^2 + x = 0
<=> x(x^2 + 2x + 1) = 0
<=> x(x + 1)^2 = 0
<=> x = 0 hoặc x + 1 = 0
<=> x = 0 hoặc x = 0 - 1
<=> x = 0 hoặc x = -1
Bµi 5: Gi¶i PT sau.
\(a,\frac{5x-2}{2-2x}+\frac{2x-1}{2}+\frac{x^2+x-3}{1-x}=1\)
b,\(\frac{6x-1}{2-x}+\frac{9x+4}{x+2}=\frac{3x^2-2x+1}{x^2-4}\)
\(c,\frac{1}{x-1}+\frac{2x^2-5}{x^3-1}=\frac{4}{x^2+x+1}\)
d) (x2 + 4x + 8)2 + 3x(x2 + 4x + 8) + 2x2 = 0
e) x4 + 2x3 + 4x2 + 2x + 1 = 0
\(f,\frac{3x-1}{x-1}-\frac{2x+5}{x+3}+\frac{4}{x^2+2x-3}=1\)
a) \(\frac{5x-2}{2-2x}+\frac{2x-1}{2}+\frac{x^2+x-3}{1-x}=1\)
ĐK: x≠1
<=>\(\frac{5x-2}{2\left(1-x\right)}+\frac{2x-1}{2}\frac{x^2+x-3}{1-x}=1\)
<=>\(\frac{5x-2+\left(1-x\right).\left(2x-1\right)+2\left(x^2+x-3\right)}{2\left(1-x\right)}=1\)
<=>\(\frac{5x-2+2x-1-2x^2+x+2x^2+2x-6}{2\left(1-x\right)}=1\)
<=>\(\frac{10x-9}{2\left(1-x\right)}=1\)
<=> 10x-9=2(1-x)
<=>10x-9=2-2x
<=> 10x+2x= 2+9
<=> 12x=11
<=> x= \(\frac{11}{12}\left(tm\right)\)
b) \(\frac{6x-1}{2-x}+\frac{9x+4}{x+2}=\frac{3x^2-2x+1}{x^2-4}\)
ĐK: x≠2, x≠-2
<=>\(\frac{6x-1}{-\left(x-2\right)}+\frac{9x+4}{x+2}-\frac{3x^2-2x+1}{\left(x-2\right)\left(x+2\right)}=0\)
<=> -(x+2).(6x-1)+(x-2).(9x+4)-(3x2-2x+1)=0
<=> -(6x2-x+12x-2)+9x2+4x-18x-8-3x2+2x-1 = 0
<=> -6x2-11x+2+9x2+4x-18x-8-3x2+2x-1=0
<=> -23x-7=0
<=> -23x=7
<=> x= \(\frac{-7}{23}\left(tm\right)\)
tham khảo câu d trong
https://hoc24.vn/hoi-dap/question/919967.html
c) \(\frac{1}{x-1}\)+\(\frac{2x^2-5}{x^3-1}\)=\(\frac{4}{x^2+x+1}\) (ĐKXĐ:x≠1)
⇔\(\frac{x^2+x+1}{\left(x-1\right)\left(x^2+x+1\right)}\)+\(\frac{2x^2-5}{\left(x-1\right)\left(x^2+x+1\right)}\)=\(\frac{4\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\)
⇒x2+x+1+2x2-5=4x-4
⇔3x2-3x=0
⇔3x(x-1)=0
⇔x=0 (TMĐK) hoặc x=1 (loại)
Vậy tập nghiệm của phương trình đã cho là:S={0}
Giải các phương trình.
a) \(\frac{2.\left(1-3x\right)}{5}-\frac{2+3x}{10}=7-\frac{3.\left(2x+1\right)}{4}\)b) \(\frac{3x+2}{2}-\frac{3x+1}{6}=2x+\frac{5}{3}\)
c) 3x-5=7
d) \(\frac{5}{x+3}=\frac{3}{x-1}\)
e) -2x+14=0
f) 2x.(x-3)+5.(x-3)=0
g) (x2-4)-(x-2).(3-2x)=0
h) 2x3+6x2=x2+3x
1. giải phương trình.
a. (2x+1)(x-1)=0
b. \(\left(x+\frac{2}{3}\right)\left(x-\frac{1}{2}\right)\) (x+2020)=0
c. (3x-1)(2x-3)(2x-3)(x+5)=0
d. 3x-15=2x(x-5)
e. x2-2x+1=0
f. x2+x+\(\frac{1}{4}\) =0
g. x2-3x-4=0
h. (x+1)(x+4)=(2-x)(x+2)
Mik mới làm có bằng này bạn xem còn căc ý còn lại mik sẽ có làm.
a) \(\left(2x+1\right)\left(x-1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}2x+1=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\frac{1}{2}\\x=1\end{matrix}\right.\)
Vậy \(S=\left\{-\frac{1}{2};1\right\}\)là tập nghiệm của p/trình đã cho
b)\(\left(x+\frac{2}{3}\right)\left(x-\frac{1}{2}\right)\left(x+2020\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x+\frac{2}{3}=0\\x-\frac{1}{2}=0\\x+2020=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\frac{2}{3}\\x=\frac{1}{2}\\x=-2020\end{matrix}\right.\)
Vậy \(S=\left\{-\frac{2}{3};\frac{1}{2};-2020\right\}\) là tập nghiệm của p/trình đã cho
c) \(\left(3x-1\right)\left(2x-3\right)\left(2x-3\right)\left(x+5\right)=0\)
\(\Leftrightarrow\left(3x-1\right)\left(x+5\right)\left(2x-3\right)^2=0\)
\(\Rightarrow\left[{}\begin{matrix}3x-1=0\\x+5=0\\\left(2x-3\right)^2=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=\frac{1}{3}\\x=-5\\x=\frac{3}{2}\end{matrix}\right.\)
Vậy \(S=\left\{\frac{1}{3};-5;\frac{3}{2}\right\}\) là tập nghiệm của p/trình đã cho
d) \(3x-15=2x\left(x-5\right)\)
\(\Leftrightarrow3\left(x-5\right)=2x\left(x-5\right)\)
\(\Leftrightarrow2x\left(x-5\right)-3\left(x-5\right)=0\)
\(\Leftrightarrow\left(2x-3\right)\left(x-5\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}2x-3=0\\x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{3}{2}\\x=5\end{matrix}\right.\)
Vậy \(S=\left\{\frac{3}{2};5\right\}\) là tập nghiệm của p/trình đã cho
e) \(x^2-2x+1=0\)
\(\Leftrightarrow\left(x-1\right)^2=0\)
\(\Leftrightarrow x-1=0\Leftrightarrow x=1\)
Vậy \(S=\left\{1\right\}\) là tập nghiệm của p/trình đã cho
f) \(x^2+x+\frac{1}{4}=0\)
\(\Leftrightarrow\left(x+\frac{1}{2}\right)^2=0\)
\(\Leftrightarrow x+\frac{1}{2}=0\Leftrightarrow x=-\frac{1}{2}\)
Vậy \(S=\left\{-\frac{1}{2}\right\}\) là tập nghiệm của p/trình đã cho
g) \(x^2-3x-4=0\)
\(\Leftrightarrow x^2-4x+x-4=0\)
\(\Leftrightarrow x\left(x-4\right)+\left(x-4\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x-4\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x+1=0\\x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=4\end{matrix}\right.\)
Vậy \(S=\left\{-1;4\right\}\) là tập nghiệm của p/trình đã cho
h) \(\left(x+1\right)\left(x+4\right)=\left(2-x\right)\left(2+x\right)\)
\(\Leftrightarrow x^2+5x+4=4-x^2\)
\(\Leftrightarrow x^2+5x+4-4+x^2=0\)
\(\Leftrightarrow2x^2+5x=0\)
\(\Leftrightarrow x\left(2x+5\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\2x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-\frac{5}{2}\end{matrix}\right.\)
Vậy \(S=\left\{0;-\frac{5}{2}\right\}\) là tập nghiệm của p/trình đã cho