√x(x+1) + √x(x+2) =2 √x^2
giải phương trình:
a) 2/x+1 - 1/x-3= 3x-11/x^2-2x-3
b) 3/x-2 +1/x=-2/x.(x-2)
c) x-3/x+3 - 2/x-3=3x+1/9-x^2
d) 2/x+1 - 1/x-2=3x-5/x^2-x-2
e) x-2/x+2 + 3/x-2=x^2-11/x^2-4
f) x+3/x+1 + x-2/x=2
g) x+5/x-5 - x-5/x+5=20/x^2-25
h) x+4/x+1 + x/x-1=2x^2/x^2-1
i) x+1/x-1 - 1/x+1=x^2+2/x^2-1
B1:tìm x biết a, (-2+x^2)(x^2-2)(x^2-2)(x^2-2)(x^2-2)=1 b, (2x+3)(x-4)+(x-5)(x-2)=(3x-5)(x-4) c,(8x-3)(3x+2)-(4x+7)(x+4)=(4x+1)(5x-1) d, 2x^2+3(x-1)(x+1)=5x(x+1) e, (8-5x)(x+2)+4(x-2)(x+1)=(2+x)(2-x) f, 4(x-1)(x+5)-(x+2)(x+5)=3(x-1)(x+2)
Bạn nên viết lại đề bài cho sáng sủa, rõ ràng để người đọc dễ hiểu hơn.
f: =>4(x^2+4x-5)-x^2-7x-10=3(x^2+x-2)
=>4x^2+16x-20-x^2-7x-10-3x^2-3x+6=0
=>6x-24=0
=>x=4
e: =>8x+16-5x^2-10x+4(x^2-x-2)=4-x^2
=>-5x^2-2x+16+4x^2-4x-8=4-x^2
=>-6x+8=4
=>-6x=-4
=>x=2/3
d: =>2x^2+3x^2-3=5x^2+5x
=>5x=-3
=>x=-3/5
b: =>2x^2-8x+3x-12+x^2-7x+10=3x^2-12x-5x+20
=>-12x-2=-17x+20
=>5x=22
=>x=22/5
Chúng ta sẽ giải từng phương trình một:
a. Đặt , ta có:
giải phương trình:
a, 2x-5/x+5=3
b, 2/x-1=6/x+1
c, 2x+1/x-1=5(x-1)/x+1
d, x/x-1 - 2x/x2-1=0
e, 1/x-2 + 3=x-3/2-x
f, x+1/x-2 + x-1/x+2= 2(x2+2)/x2-4
g, x+2/x-2 + 1/x+2=x(x-5)/x2-4
h, 1/x+1 - 5/x+2=15/(x+1)(2-x)
i, x-1/x+2 - x/x-2= 5x-2/4-x2
a,\(2x-5=3x+15\)
\(3x-2x=-5-15\)
\(x=-20\)
b,\(\frac{2}{x-1}=\frac{6}{x+1}\)
\(2x+2=6x-6\)
\(4x=8\)
\(x=2\)
\(\frac{2x+1}{x-1}=\frac{5.\left(x-1\right)}{x+1}\)
\(\frac{2x+1}{x-1}=\frac{5x-5}{x+1}\)
\(2x^2+3x+1=5x^2-10+5\)
\(3x^2-3x=10-5+1=6\)
\(3x.\left(x-1\right)=6\)
\(x.\left(x-1\right)=3\)
Lập bảng
Bài 1:
a, (-2+x\(^2\))(x\(^2\)-2)(x\(^2\)-2)(x\(^2\)-2)(x\(^2\)-2)=1
b, (2x+3)(x-4)+(x-5)(x-2)=(3x-5)(x-4)
c, (8x-3)(3x+2)-(4x+7)(x+4)=(4x+1)(5x-1)
d,2x\(^2\)+3(x-1)(x+1)=5x(x+1)
e,(8-5x)(x+2)+4(x-2)(x+1)=(2+x)(2-x)
f, 4(x-1)(x+5)-(x+2)(x+5)=3(x-1)(x+2)
b: =>2x^2-8x+3x-12+x^2-7x+10=3x^2-17x+20
=>-12x-2=-17x+20
=>5x=22
=>x=22/5
c: =>24x^2+16x-9x-6-4x^2-16x-7x-28=20x^2-4x+5x-1
=>-16x-34=x-1
=>-17x=33
=>x=-33/17
d: =>2x^2+3x^2-3=5x^2+5x
=>5x=-3
=>x=-3/5
e: =>8x+16-5x^2-10x+4x^2-4x-8=4-x^2
=>-6x+8=4
=>-6x=-4
=>x=2/3
f: =>4(x^2+4x-5)-x^2-7x-10=3x^2+3x-6
=>4x^2+16x-20-4x^2-10x+4=0
=>6x=16
=>x=8/3
Bài 1:Tìm x,biết:
a,(x-2)(x+2)-(x-3)\(^2\)=9
b,(x-1)(x\(^2\)+1)-(x+1)(x\(^2\)-x+1)=x(2-x)
c,(x-3)(x\(^2\)+3x+9)+x(x+2)(2-x)=1
d,(x+1)\(^3\)-(x-1)\(^{^{ }3}\)-6(x-1)\(^2\)=-19
Bài 2:Viết về dạng bình phương hoặc dạng tích:
a,\(\dfrac{1}{27}\)x\(^3\)+x\(^2\)+9x+27
b,8u\(^3\)-60u\(^2\)v+150uv\(^2\)-125v\(^3\)
c,x^3+3x^2+3x+1+3(x^2+2x+1)y+3xy^2+3y^3+y^3
a. (x - 2)(x + 2) - (x - 3)2 = 9
<=> x2 - 22 - (x - 3)2 = 32
<=> x - 2 - (x - 3) = 3
<=> x - 2 - x + 3 = 3
<=> x - x = 3 - 3 + 2
<=> 0 = 2 (Vô lí)
Vậy nghiệm của PT là S = \(\varnothing\)
b: Ta có: \(\left(x-1\right)\left(x^2+1\right)-\left(x+1\right)\left(x^2-x+1\right)=x\left(2-x\right)\)
\(\Leftrightarrow x^3+x-x^2-1-x^3-1=2x-x^2\)
\(\Leftrightarrow-x^2+x-2-2x+x^2=0\)
\(\Leftrightarrow-x=2\)
hay x=-2
$$ \frac{x^4-(x-1)^2}{(x^2+1)^2-x^2}+\frac{x^2-(x^2-1)^2}{x^2*(x+1)^2-1}+\frac{x^2*(x-1)^2-1}{x^4-(x+1)^2} $$
1) ĐKXĐ: \(x\notin\left\{1;-1\right\}\)
Ta có: \(\dfrac{x+1}{x-1}-\dfrac{x-1}{x+1}=\dfrac{4}{x^2-1}\)
\(\Leftrightarrow\dfrac{\left(x+1\right)^2}{\left(x-1\right)\left(x+1\right)}-\dfrac{\left(x-1\right)^2}{\left(x-1\right)\left(x+1\right)}=\dfrac{4}{\left(x-1\right)\left(x+1\right)}\)
Suy ra: \(x^2+2x+1-\left(x^2-2x+1\right)=4\)
\(\Leftrightarrow x^2+2x+1-x^2+2x-1=4\)
\(\Leftrightarrow4x=4\)
hay x=1(loại)
Vậy: \(S=\varnothing\)
2) ĐKXĐ: \(x\notin\left\{2;-2\right\}\)
Ta có: \(\dfrac{x+2}{x-2}+\dfrac{x}{x+2}=2\)
\(\Leftrightarrow\dfrac{\left(x+2\right)^2}{\left(x-2\right)\left(x+2\right)}+\dfrac{x\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}=\dfrac{2\left(x^2-4\right)}{\left(x-2\right)\left(x+2\right)}\)
Suy ra: \(x^2+4x+4+x^2-2x=2x^2-8\)
\(\Leftrightarrow2x^2+2x+4-2x^2-8=0\)
\(\Leftrightarrow2x-4=0\)
\(\Leftrightarrow2x=4\)
hay x=2(loại)
Vậy: \(S=\varnothing\)
a) 1-4x^2/x^2+4x : 2-4x/3x
b) x+1/x+2 : x+2/x+3 : x+3/x+1
c)x+1/x+2 : (x+2/x+3 : x+3/x+1)
d) (1/x^2+x - 2-2x/x+1):(1/x+x-2)
e) 5x-15/4x+4 : x^2-9/x^2+2x+1
Quy đồng mẫu các phân thức:
1) 7x-1/2x^2+6x; 3-2x/x^2-9
2) 2x-1/x-x^2; x+1/2-4x+2x^2
3) x-1/x^3+1; 2x/x^2-x+1; 2/x+1
4) 7/5x; 4/x-2y; x-y/8y^2-2x^2
5) x/x^3-1; x+1/x^2-x; x-1/x^2+x+1
6) x/x^2-2ax+a^2; x+a/x^2-ax
Quy đồng mẫu các phân thức:
1) 7x-1/2x^2+6x; 3-2x/x^2-9
2) 2x-1/x-x^2; x+1/2-4x+2x^2
3) x-1/x^3+1; 2x/x^2-x+1; 2/x+1
4) 7/5x; 4/x-2y; x-y/8y^2-2x^2
5) x/x^3-1; x+1/x^2-x; x-1/x^2+x+1
6) x/x^2-2ax+a^2; x+a/x^2-ax
1)
\(\dfrac{7x-1}{2x^2+6x}=\dfrac{7x-12}{x\left(x+3\right)}\)
\(\dfrac{3-2x}{x^2-9}=\dfrac{3-2x}{\left(x-3\right)\left(x+3\right)}\)
MTC: \(x\left(x-3\right)\left(x+3\right)\)
\(\dfrac{7x-1}{2x^2+6x}=\dfrac{7x-12}{x\left(x+3\right)}=\dfrac{\left(x-3\right)\left(7x-12\right)}{x\left(x-3\right)\left(x+3\right)}=\dfrac{7x^2-12x-21x+36}{x\left(x-3\right)\left(x+3\right)}=\dfrac{7x^2-33x+36}{x\left(x-3\right)\left(x+3\right)}\)
\(\dfrac{3-2x}{x^2-9}=\dfrac{3-2x}{\left(x-3\right)\left(x+3\right)}=\dfrac{ x\left(3-2x\right)}{x\left(x-3\right)\left(x+3\right)}\dfrac{3x-2x^2}{x\left(x-3\right)\left(x+3\right)}\)
2)
\(\dfrac{2x-1}{x-x^2}=\dfrac{2x-1}{x\left(1-x\right)}\)
\(\dfrac{x+1}{2-4x+2x^2}=\dfrac{x+1}{2\left(1-2x+x^2\right)}=\dfrac{x+1}{2\left(1-x\right)^2}\)
MTC: \(2x\left(1-x\right)^2\)
\(\dfrac{2x-1}{x-x^2}=\dfrac{2x-1}{x\left(1-x\right)}=\dfrac{2\left(1-x\right)\left(2x-1\right)}{2x\left(1-x\right)^2}=\dfrac{\left(2-2x\right)\left(2x-1\right)}{2x\left(1-x\right)^2}=\dfrac{4x-2-4x^2+2x}{2x\left(1-x\right)^2}=\dfrac{6x-2-4x^2}{2x\left(1-x\right)^2}\)
\(\dfrac{x+1}{2-4x+2x^2}=\dfrac{x+1}{2\left(1-2x+x^2\right)}=\dfrac{x+1}{2\left(1-x\right)^2}=\dfrac{ x\left(x+1\right)}{2x\left(1-x\right)^2}=\dfrac{x^2+x}{2x\left(1-x\right)^2}\)
Phần còn lại nhé :v
3.
\(x^3+1=\left(x+1\right)\left(x^2-x+1\right)\)
\(x^2-x+1=x^2-x+1\)
\(x+1=x+1\)
MTC: \(\left(x+1\right)\left(x^2-x+1\right)\)
\(\dfrac{x-1}{x^3+1}=\dfrac{x-1}{\left(x+1\right)\left(x^2-x+1\right)}\)
\(\dfrac{2x}{x^2-x+1}=\dfrac{2x\left(x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}\)
\(\dfrac{2}{x+1}=\dfrac{2\left(x^2-x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}\)
4.
\(5x\)
\(x-2y=x-2y=-\left(2y-x\right)\)
\(8y^2-2x^2=2\left(4y^2-x^2\right)=2\left(2y-x\right)\left(2y+x\right)\)
MTC: \(-10x\left(2y-x\right)\left(2y+x\right)\)
\(\dfrac{7}{5x}=\dfrac{7\left(2y-x\right)\left(2y+x\right)-2}{5x\left(2y-x\right)\left(2y+x\right)-2}=\dfrac{-14\left(2y-x\right)\left(2y+x\right)}{-10x\left(2y-x\right)\left(2y+x\right)}\)
\(\dfrac{4}{x-2y}=\dfrac{4\left(2y-x\right)\left(2y+x\right)10x}{-\left(2y-x\right)\left(2y+x\right)10x}=\dfrac{40x\left(2y-x\right)\left(2y+x\right)}{-10x\left(2y-x\right)\left(2y+x\right)}\)
\(\dfrac{x-y}{8y^2-2x^2}=\dfrac{\left(x-y\right)-5x}{2\left(2y-x\right)\left(2y+x\right)-5x}=\dfrac{-5x\left(x-y\right)}{-10x\left(2y-x\right)\left(2y+x\right)}\)
5.
\(x^3-1=\left(x-1\right)\left(x^2+x+1\right)\)
\(x^2-x=x\left(x-1\right)\)
\(x^2+x+1\)
MTC: \(x\left(x-1\right)\left(x^2+x+1\right)\)
\(\dfrac{x}{x^3-1}=\dfrac{x.x}{\left(x-1\right)\left(x^2+x+1\right)x}=\dfrac{x^2}{x\left(x-1\right)\left(x^2+x+1\right)}\)
\(\dfrac{x+1}{x^2-x}=\dfrac{\left(x+1\right)\left(x^2+x+1\right)}{x\left(x-1\right)\left(x^2+x+1\right)}\)
\(\dfrac{x-1}{x^2+x+1}=\dfrac{x\left(x-1\right)\left(x-1\right)}{x\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{x\left(x-1\right)^2}{x\left(x-1\right)\left(x^2+x+1\right)}\)
6.
\(x^2-2ax+a^2=\left(x-a\right)^2\)
\(x^2-ax=x\left(x-a\right)\)
MTC: \(x\left(x-a\right)^2\)
\(\dfrac{x}{x^2-2ax+a^2}=\dfrac{x.x}{\left(x-a\right)^2x}=\dfrac{x^2}{x\left(x-a\right)^2}\)
\(\dfrac{x+a}{x^2-ax}=\dfrac{\left(x+a\right)\left(x-a\right)}{x\left(x-a\right)\left(x-a\right)}=\dfrac{x^2-a^2}{x\left(x-a\right)^2}\)