Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
anhmiing
Xem chi tiết
阮草~๖ۣۜDαɾƙ
24 tháng 8 2019 lúc 16:27

a. = \(\left(x^3+x^2\right)+\left(7x^2+7x\right)+\left(10x+10\right)\)

\(x^2\left(x+1\right)+7x\left(x+1\right)+10x\left(x+1\right)\)

\(\left(x+1\right)\left(x^2+7x+10x\right)\)

\(\left(x+1\right)\left(x+2\right)\left(x+5\right)\)

hoàng thành
Xem chi tiết
Nguyễn Lê Phước Thịnh
9 tháng 7 2023 lúc 12:39

64x^4+y^4

=64x^4+16x^2y^2+y^4-16x^2y^2

=(8x^2+y^2)^2-(4xy)^2

=(8x^2-4xy+y^2)(8x^2+4xy+y^2)

Lê Hoàng Thảo Nguyên
Xem chi tiết
Kiệt Nguyễn
4 tháng 8 2019 lúc 19:54

a) \(6x^2-11x+3\)

\(=6x^2-9x-2x+3\)

\(=3x\left(2x-3\right)-\left(2x-3\right)\)

\(=\left(3x-1\right)\left(2x-3\right)\)

Kiệt Nguyễn
4 tháng 8 2019 lúc 19:55

b) \(2x^2+3x-27\)

\(=2x^2-6x+9x-27\)

\(=2x\left(x-3\right)+9\left(x-3\right)\)

\(=\left(2x+9\right)\left(x-3\right)\)

Kiệt Nguyễn
4 tháng 8 2019 lúc 19:58

f) \(x^2+4xy+3y^2\)

\(=x^2+xy+3xy+3y^2\)

\(=x\left(x+y\right)+3y\left(x+y\right)\)

\(=\left(3y+x\right)\left(x+y\right)\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
31 tháng 1 2018 lúc 8:26

a) x6 – x4 + 2x3 + 2x2

= x2(x4 – x2 + 2x + 2)

= x2[x2(x2 – 1) + 2(x + 1)]

= x2. [x2.(x -1).(x + 1) + 2(x+ 1)]

= x2 (x+ 1).[x2(x- 1)+ 2]

= x2(x + 1)(x3 – x2 + 2)

= x2(x + 1)[(x3 + 1) – (x2 – 1)]

= x2(x + 1).[(x + 1).(x2 – x + 1) - (x - 1).(x + 1)]

= x2(x + 1)(x + 1)( x2 – x + 1 – x + 1)

= x2(x + 1)2(x2 – 2x + 2).

b) 4x4 + y4 = 4x4 + 4x2y2 + y4 - 4x2y2

= (2x2 + y2)2 - (2xy)2

= (2x2 + y2 + 2xy)(2x2 + y2 - 2xy)

Nguyên Hoàng
Xem chi tiết
Akai Haruma
4 tháng 9 2021 lúc 18:51

Lời giải:

a.

$=(x^2)^2+(\frac{1}{2}y^4)^2+2.x^2.\frac{1}{2}y^4-x^2y^4$

$=(x^2+\frac{1}{2}y^4)^2-(xy^2)^2$
$=(x^2+\frac{1}{2}y^4-xy^2)(x^2+\frac{1}{2}y^4+xy^2)$
b.

$=(\frac{1}{2}x^2)^2+(y^4)^2+2.\frac{1}{2}x^2.y^4-x^2y^4$
$=(\frac{1}{2}x^2+y^4)^2-(xy^2)^2$
$=(\frac{1}{2}x^2+y^4-xy^2)(\frac{1}{2}x^2+y^4+xy^2)$

c.

$=(8x^2)^2+(y^2)^2+2.8x^2.y^2-16x^2y^2$

$=(8x^2+y^2)^2-(4xy)^2=(8x^2+y^2-4xy)(8x^2+y^2+4xy)$

d.

$=\frac{64x^4+y^4}{64}=\frac{1}{64}(8x^2+y^2-4xy)(8x^2+y^2+4xy)$

Nguyễn Lê Phước Thịnh
4 tháng 9 2021 lúc 22:57

c: \(64x^4+y^4\)

\(=64x^4+16x^2y^2+y^4-16x^2y^2\)

\(=\left(8x^2+y^2\right)^2-\left(4xy\right)^2\)

\(=\left(8x^2+y^2-4xy\right)\left(8x^2+y^2+4xy\right)\)

 

Trà chanh chém gió
Xem chi tiết
Kiều Vũ Linh
17 tháng 7 2023 lúc 9:24

a) 6x² + 7xy + 2y²

= 6x² + 4xy + 3xy + 2y²

= (6x² + 4xy) + (3xy + 2y²)

= 2x(3x + 2y) + y(3x + 2y)

= (3x + 2y)(2x + y)

b) x² - y² + 10x - 6y + 16

= x² + 10x + 25 - y² - 6y - 9

= (x² + 10x + 25) - (y² + 6y + 9)

= (x + 5)² - (y + 3)²

= (x + 5 - y - 3)(x + 5 + y + 3)

= (x - y + 2)(x + y + 8)

c) 4x⁴ + y⁴

= 4x⁴ + 4x²y² + y⁴ - 4x²y²

= (2x² + y²)² - (2xy)²

= (2x² + y² - 2xy)(2x² + y² + 2xy)

Ly Bùi
Xem chi tiết
nguyễn kim thương
6 tháng 6 2017 lúc 9:00

1)  \(x^2-7x+6=x^3+1-7x-7=\left(x^3+1\right)-7\left(x+1\right)=\left(x+1\right)\left(x^2-x-6\right)\)

2)  \(x^3-9x^2+6x+16\)

\(\left(x^3+1\right)-\left[\left(9x^2-6x+1\right)-16\right]\)

\(=\left(x^3+1\right)-\left[\left(3x-1\right)^2-16\right]=\left(x^3+1\right)-\left(3x-1+4\right)\left(3x-1-4\right)\)\(=\left(x^3+1\right)-3\left(3x-5\right)\left(x+1\right)\)\(=\left(x+1\right)\left[x^2-x+1-9x+15\right]=\left(x+1\right)\left(x^2-10x+16\right)\)

\(=\left(x+1\right)\left[x\left(x-2\right)-8\left(x-2\right)\right]\)\(\left(x+1\right)\left(x-2\right)\left(x-8\right)\)

3)   \(x^3-6x^2-x+30\)

\(=x^3-5x^2-x^2+5x-6x+30\)

\(=x^2\left(x-5\right)-x\left(x-5\right)-6\left(x-5\right)\)

\(=\left(x-5\right)\left(x^2-x-1\right)\)

4)  \(2x^3-x^2+5x+3=\left(2x^3+x^2\right)-\left(2x^2+x\right)+\left(6x+3\right)\)

\(=x^2\left(2x+1\right)-x\left(2x+1\right)+3\left(2x+1\right)\)

\(=\left(2x+1\right)\left(x^2-x+3\right)\)

5) \(27x^3-27x^2+18x-4=\left(27x^3-1\right)-\left(27x^2-18x+3\right)\)

\(=\left(3x-1\right)\left(9x^2+3x+1\right)-3\left(9x^2-6x+1\right)\)

\(=\left(3x-1\right)\left(9x^2+3x+1\right)-3\left(3x-1\right)^2\)

\(=\left(3x-1\right)\left(9x^2+3x+1-9x+3\right)=\left(3x-1\right)\left(9x^2-6x+4\right)\)

gửi phần này trước còn lại làm sau !!! tk mk nka !!!

Nguyễn Đức Phương
5 tháng 6 2017 lúc 21:54

nhiều thế

nguyễn kim thương
6 tháng 6 2017 lúc 9:39

6) \(\left(x+y\right)^2-\left(x+y\right)-12\)\(=\left(x+y\right)^2-2\cdot\frac{1}{2}\left(x+y\right)+\frac{1}{4}-\frac{49}{4}\)

\(=\left(x+y-\frac{1}{2}\right)^2-\left(\frac{7}{2}\right)^2\)\(=\left(x+y-\frac{1}{2}-\frac{7}{2}\right)\left(x+y-\frac{1}{2}+\frac{7}{2}\right)\)

\(=\left(x-4\right)\left(x+3\right)\)

7)   \(\left(x+2\right)\left(x+5\right)\left(x+3\right)\left(x+4\right)-24\)          (NHÂN x + 2 vs x +  5  và  x + 3 vs x + 4 )

\(=\left(x^2+7x+10\right)\left(x^2+7x+12\right)-24\)

ĐẶT   \(x^2+7x+11=y\)   ta được :  

\(\left(y+1\right)\left(y-1\right)-24=y^2-1-24\)

\(=y^2-25=\left(y-5\right)\left(y+5\right)\)

8)  \(4x^4-32x^2+1=4x^4+4x^2+1-36x^2\)

\(=\left(2x^2+1\right)^2-\left(6x\right)^2\)\(=\left(2x^2-6x+1\right)\left(2x^2+6x+1\right)\)

9) sai đề rùi bạn ơi ! đề đúng nè 

\(3\left(x^4+x^2+1\right)-\left(x^2+x+1\right)^2\)

Ta thấy :  

\(x^4+x^2+1=\left(x^4+2x^2+1\right)-x^2\)\(=\left(x^2+1\right)^2-x^2=\left(x^2+x+1\right)\left(x^2-x+1\right)\)

Thay vào biểu thức bài cho ta được : 

\(3\left(x^2-x+1\right)\left(x^2+x+1\right)-\left(x^2+x+1\right)^2\)

\(=\left(x^2+x+1\right)\left(3x^2-3x+3-x^2-x-1\right)\)

\(=\left(x^2+x+1\right)\left(2x^2-4x+2\right)\)

\(=2\left(x^2+x+1\right)\left(x-1\right)^2\)

bài ở trên câu 3 : kết luận là  \(\left(x-3\right)\left(x^2-x-6\right)\)bạn sửa lại giúp mk nka !!! Th@nk !!! Tk Mk vs  

Phương Trần Lê
Xem chi tiết
Nguyễn Lê Phước Thịnh
26 tháng 12 2021 lúc 23:36

a: =(x+6)(x-1)

n: \(=4x^4+36x^2+81-36x^2\)

\(=\left(2x^2+9-6x\right)\left(2x^2+9+6x\right)\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
3 tháng 4 2018 lúc 15:16

Anh Đức
Xem chi tiết
Nguyễn Hoàng Minh
16 tháng 11 2021 lúc 8:36

\(1,\\ a,=6x^4-15x^3-12x^2\\ b,=x^2+2x+1+x^2+x-3-4x=2x^2-x-2\\ c,=2x^2-3xy+4y^2\\ 2,\\ a,=7x\left(x+2y\right)\\ b,=3\left(x+4\right)-x\left(x+4\right)=\left(3-x\right)\left(x+4\right)\\ c,=\left(x-y\right)^2-z^2=\left(x-y-z\right)\left(x-y+z\right)\\ d,=x^2-5x+3x-15=\left(x-5\right)\left(x+3\right)\\ 3,\\ a,\Leftrightarrow3x\left(x+2\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\\ b,\Leftrightarrow\left(x-1\right)\left(x+2\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)

i love Vietnam
16 tháng 11 2021 lúc 8:40

Câu 1

a)\(3x^2\left(2x^2-5x-4\right)=6x^4-15x^3-12x^2\)

b)\(\left(x+1\right)^2+\left(x-2\right)\left(x+3\right)-4x=x^2+2x+1+x^2+3x-2x-6-4x=2x^2-x-5\)

 

i love Vietnam
16 tháng 11 2021 lúc 8:52

Bài 2

a) \(7x^2+14xy=7x\left(x+2y\right)\)

b) \(3x+12-\left(x^2+4x\right)=-x^2-x+12=\left(-x+3\right)\left(x+4\right)\)

c) \(x^2-2xy+y^2=\left(x-y\right)^2\)

d) \(x^2-2x-15=x^2+3x-5x-15=\left(x+3\right)\left(x-5\right)\)