Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Natsu Dragneel
Xem chi tiết
Nguyễn Việt Lâm
8 tháng 2 2020 lúc 21:23

ĐKXĐ:...

\(\Leftrightarrow\frac{36}{\sqrt{x-2}}+4\sqrt{x-2}+\frac{4}{\sqrt{y-1}}+\sqrt{y-1}=28\)

Ta có:

\(VT\ge2\sqrt{\frac{36.4\sqrt{x-2}}{\sqrt{x-2}}}+2\sqrt{\frac{4\sqrt{y-1}}{\sqrt{y-1}}}=28\)

Dấu "=" xảy ra khi và chỉ khi:

\(\left\{{}\begin{matrix}\frac{9}{\sqrt{x-2}}=\sqrt{x-2}\\\frac{4}{\sqrt{y-1}}=\sqrt{y-1}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=11\\y=5\end{matrix}\right.\)

Khách vãng lai đã xóa
Thu Trần Thị
Xem chi tiết
Hoàng Lê Bảo Ngọc
3 tháng 1 2017 lúc 15:52

ĐKXĐ : \(\hept{\begin{cases}x>2\\y>1\end{cases}}\)

PT đã cho tương đương với \(\left(\frac{36}{\sqrt{x-2}}+4\sqrt{x-2}-24\right)+\left(\frac{4}{\sqrt{y-1}}+\sqrt{y+1}-4\right)=0\)

\(\Leftrightarrow\frac{\left(2\sqrt{x-2}-6\right)^2}{\sqrt{x-2}}+\frac{\left(\sqrt{y-1}-2\right)^2}{\sqrt{y-1}}=0\)

\(\Leftrightarrow\hept{\begin{cases}2\sqrt{x-2}-6=0\\\sqrt{y-1}-2=0\end{cases}}\)

Tới đây bạn tự giải được rồi :)

alan walker
2 tháng 9 2017 lúc 8:07

Câu hỏi của Thu Trần Thị - Toán lớp 9 - Học toán với OnlineMath

tham khảo nhé 

bn cần đoa

Hà Thị Ngọc Lan
11 tháng 3 2020 lúc 16:29

                                       Bài giải

Bạn kham khảo câu hỏi này nha bạn ! Thu Trần Thị 

Khách vãng lai đã xóa
Lunox Butterfly Seraphim
Xem chi tiết
Nguyễn Việt Lâm
4 tháng 9 2020 lúc 16:40

ĐKXĐ; ....

\(\Leftrightarrow\frac{36}{\sqrt{x-2}}+4\sqrt{x-2}+\frac{4}{\sqrt{y-1}}+\sqrt{y-1}=28\)

Ta có:

\(VT\ge2\sqrt{\frac{36.4\sqrt{x-2}}{\sqrt{x-2}}}+2\sqrt{\frac{4\sqrt{y-1}}{\sqrt{y-1}}}=28\)

Dấu "=" xảy ra khi và chỉ khi:

\(\left\{{}\begin{matrix}\frac{36}{\sqrt{x-2}}=4\sqrt{x-2}\\\frac{4}{\sqrt{y-1}}=\sqrt{y-1}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=11\\y=5\end{matrix}\right.\)

Vậy pt có cặp nghiệm duy nhất \(\left(x;y\right)=\left(11;5\right)\)

Trần Hữu Ngọc Minh
Xem chi tiết
phạm văn tuấn
14 tháng 12 2017 lúc 6:28

<br class="Apple-interchange-newline"><div id="inner-editor"></div>x>2;y>1

Khi đó Pt 36√x−2 +4√x−2+4√y−1 +√y−1=28

theo BĐT Cô si ta có 36√x−2 +4√x−2≥2.√36√x−2 .4√x−2=24

                                  và 4√y−1 +√y−1≥2√4√y−1 .√y−1=4

Pt đã cho có VT>= 28 Dấu "=" xảy ra 

36√x−2 =4√x−2⇔x=11

và 4√y−1 =√y−1⇔y=5

Đối chiếu với ĐK thì x=11; y=5 là nghiệm của PT

Thu Trần Thị
Xem chi tiết
Quỳnh Ngân
Xem chi tiết
Anh Khương Vũ Phương
Xem chi tiết
Phương An
24 tháng 10 2017 lúc 15:03

Đặt \(\left\{{}\begin{matrix}\sqrt{x-2}=a\left(a>0\right)\\\sqrt{y-1}=b\left(b>0\right)\end{matrix}\right.\)

\(\Rightarrow\dfrac{36}{a}+\dfrac{4}{b}=28-4a-b\)

\(\Leftrightarrow\left(\dfrac{36}{a}+4a\right)+\left(\dfrac{4}{b}+b\right)=28\)

\(VT\ge2\sqrt{\dfrac{36}{a}\times4a}+2\sqrt{\dfrac{4}{b}\times b}=28\)

Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}\dfrac{36}{a}=4a\\\dfrac{4}{b}=b\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=3\\b=2\end{matrix}\right.\) \(\left(a,b>0\right)\)

\(\Rightarrow\left\{{}\begin{matrix}\sqrt{x-2}=3\\\sqrt{y-1}=2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=11\\y=5\end{matrix}\right.\) (n)

Vậy . . . >3<

Hoàng Trần Trà My
Xem chi tiết
Vibranium
Xem chi tiết
Thắng Nguyễn
21 tháng 9 2017 lúc 22:46

ĐK:\(x\ge2;y\ge1\)

\(pt\Leftrightarrow\frac{36}{\sqrt{x-2}}+\frac{4}{\sqrt{y-1}}+4\sqrt{x-2}+\sqrt{y-1}=28\)

Áp dụng BĐT AM-GM ta có: 

\(VT=\frac{36}{\sqrt{x-2}}+\frac{4}{\sqrt{y-1}}+4\sqrt{x-2}+\sqrt{y-1}\)

\(\ge2\sqrt{\frac{36}{\sqrt{x-2}}\cdot4\sqrt{x-2}}+2\sqrt{\frac{4}{\sqrt{y-1}}\cdot\sqrt{y-1}}\)

\(=2\sqrt{36\cdot4}+2\sqrt{4}=28=VP\)

Xảy ra khi \(\hept{\begin{cases}\frac{36}{\sqrt{x-2}}=\sqrt{x-2}\\\frac{4}{\sqrt{y-1}}=\sqrt{y-1}\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=38\\y=5\end{cases}}\) (thỏa)