Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Huyền
Xem chi tiết
Nguyễn Việt Lâm
29 tháng 5 2019 lúc 19:17

Hình như lớp 11 học đạo hàm rồi thì phải

\(y=sinx\left(1-2\left(1-2sin^2x\right)\right)=sinx\left(4sin^2x-1\right)=4sin^3x-sinx\)

Xét hàm \(f\left(t\right)=4t^3-t\) với \(t\in\left[-1;1\right]\)

\(f'\left(t\right)=12t^2-1=0\Rightarrow\left[{}\begin{matrix}t=\frac{\sqrt{3}}{6}\\t=\frac{-\sqrt{3}}{6}\end{matrix}\right.\)

Ta có: \(f\left(-1\right)=-3;f\left(1\right)=3;f\left(\frac{\sqrt{3}}{6}\right)=\frac{-\sqrt{3}}{9};f\left(\frac{-\sqrt{3}}{6}\right)=\frac{\sqrt{3}}{9}\)

\(\Rightarrow y_{min}=-3\) khi \(sinx=-1\Rightarrow x=-\frac{\pi}{2}+k2\pi\)

\(y_{max}=3\) khi \(sinx=1\Rightarrow x=\frac{\pi}{2}+k2\pi\)

Hoài Tạ Thị Thu
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
4 tháng 6 2019 lúc 3:47

Giải bài 4 trang 37 sgk Đại số 11 | Để học tốt Toán 11

Giải bài 4 trang 37 sgk Đại số 11 | Để học tốt Toán 11

Vậy phương trình có tập nghiệm 

Giải bài 4 trang 37 sgk Đại số 11 | Để học tốt Toán 11 (k ∈ Z)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
5 tháng 8 2018 lúc 12:11

Hướng dẫn giải:

Chọn A.

+ Trường hợp 1. 

: là nghiệm của phương trình

+ Trường hợp 2.

: Chia 2 vế phương trình cho cos2x ta được

Suẩn Khẩm
Xem chi tiết
Hoàng Tử Hà
23 tháng 2 2021 lúc 14:29

1/ \(3-4\sin^2=4\cos^2x-1\Leftrightarrow4\left(\sin^2x+\cos^2x\right)-4=0\Leftrightarrow4.1-4=0\left(ld\right)\Rightarrow dpcm\)

2/ \(\cos^4x-\sin^4x=\left(\cos^2x+\sin^2x\right)\left(\cos^2x-\sin^2x\right)=\cos^2x-\left(1-\cos^2x\right)=2\cos^2x-1=\left(1-\sin^2x\right)-\sin^2x=1-2\sin^2x\)

3/ \(\sin^4x+\cos^4x=\left(\sin^2x+\cos^2x\right)^2-2\sin^2x.\cos^2x=1-2\sin^2x.\cos^2x\)

Quach Bich
Xem chi tiết
Dung Vu
Xem chi tiết
Nguyễn Hoàng Minh
10 tháng 11 2021 lúc 7:30

\(\Leftrightarrow-2\le x+y\le2\\ Max\Leftrightarrow x=2-y\\ Min\Leftrightarrow x=-2-y\)

Đỗ Gia Huy
Xem chi tiết
fan FA
13 tháng 8 2016 lúc 13:56

1. Đặt x = √2.cosα và y = √2.sinα (với α trên [0,3π/2]) 
Ta có: P = 4√2(sinα + cosα)(1 - sinαcosα) - 6sinαcosα 
Đặt t = sinα + cosα = √2.sin(α + π/4) có |t| ≤ √2, nên sinαcosα = (t^2 - 1)/2 
suy ra P = -2√2.t^3 - 3t^2 + 6√2.t + 3. 
Đến đây bạn áp dụng P' = 0 rồi xét các gtrị cực trị. 

2. Đặt x = cosα và y = sinα (với α trên [0,3π/2]) 
Biến đổi P = (6sin2α + cos2α + 1) / (3 + sin 2α - cos 2α) 
Mặt khác lại có (cos2α)^2 + (sin 2α)^2 = 1. 
Ta áp dụng P' = 0 tiếp.

Hiếu
Xem chi tiết
Hồng Phúc
18 tháng 9 2021 lúc 18:46

\(y=sin\left(x+\dfrac{\pi}{3}\right)-sinx\)

\(=\dfrac{1}{2}sinx+\dfrac{\sqrt{3}}{2}cosx-sinx\)

\(=\dfrac{\sqrt{3}}{2}cosx-\dfrac{1}{2}sinx\)

\(=cos\left(x+\dfrac{\pi}{6}\right)\in\left[-1;1\right]\)

\(\Rightarrow\left\{{}\begin{matrix}y_{mịn}=-1\Leftrightarrow x=\dfrac{5\pi}{6}+k2\pi\\y_{max}=1\Leftrightarrow x=-\dfrac{\pi}{6}+k2\pi\end{matrix}\right.\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
4 tháng 11 2018 lúc 11:34

Chọn D