Cho x + 2\(\sqrt(y)\)=10. CMR: x+y >=20
Cho \(\sqrt{x}+2\sqrt{y}=10\). CMR \(x+y>=20\)
Cho\(\sqrt{x}+2\sqrt{y}=10\)
Chứng minh : x + y ≥ \(\sqrt{20}\)
\(\sqrt{x}+2\sqrt{y}=10=>\left(\sqrt{x}+2\sqrt{y}\right)^2=100\)
BDT Bunhiacopxki (đề sai phải lớn hơn bằng 20)
\(=>\left(\sqrt{x}+2\sqrt{y}\right)^2\le\left(1^2+2^2\right)\left(x+y\right)=5\left(x+y\right)\)
\(< =>5\left(x+y\right)\ge100=>x+y\ge20\)
Cho \(\sqrt{x}+2\sqrt{y}=10\) CMR x+y\(\ge\)0
Chắc bạn ghi nhầm đề, ĐKXĐ là \(\left\{{}\begin{matrix}x\ge0\\y\ge0\end{matrix}\right.\)
\(\Rightarrow x+y\ge0\)
Dấu "=" xảy ra khi \(x=y=0\) không phù hợp giả thiết
Áp dụng BĐT Bunhiacopxki ta có:
\(100=\left(\sqrt{x}+2\sqrt{y}\right)^2\le\left(1+4\right)\left(x+y\right)\)
\(\Rightarrow x+y\ge25\)
Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}x=16\\y=9\end{matrix}\right.\)
Cho x, y, z >0 và xyz=100
CMR: \(\frac{\sqrt{x}}{\sqrt{xy}+\sqrt{x}+10}+\frac{\sqrt{y}}{\sqrt{yz}+\sqrt{y}+1}+\frac{10\sqrt{z}}{\sqrt{xz}+\sqrt{z}+10}=1\)
Cho x, y thoả mãn : x2 + y2 - 4x - 2 = 0. CMR : \(10-4\sqrt{6}\le x^2+y^2\le10+4\sqrt{6}\)
\(x^2+y^2-4x-2=0\Leftrightarrow x^2+y^2=4x+2\)
\(-x^2+4x+2=y^2\ge0\Leftrightarrow2-\sqrt{6}\le x\le2+\sqrt{6}\\ \Rightarrow10-4\sqrt{6}\le4x+2\le10+4\sqrt{6}\\ \Leftrightarrow10-4\sqrt{6}\le x^2+y^2\le10+4\sqrt{6}\)
Cho x, y thoả mãn : x2 + y2 - 4x - 2 = 0. CMR : \(10-4\sqrt{6}\le x^2+y^2\le10+4\sqrt{6}\)
cho x,y,z >0. CMR
\(\frac{x}{\sqrt{x}+\sqrt{y}}+\frac{y}{\sqrt{y}+\sqrt{z}}+\frac{z}{\sqrt{x}+\sqrt{z}}=\frac{y}{\sqrt{x}+\sqrt{y}}+\frac{z}{\sqrt{y}+\sqrt{z}}+\frac{x}{\sqrt{x}+\sqrt{z}}\)
10 tik nha !!!!!!!!
\(\frac{x}{\sqrt{x}+\sqrt{y}}-\frac{y}{\sqrt{x}+\sqrt{y}}=\frac{\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}\right)}{\sqrt{x}+\sqrt{y}}=\sqrt{x}-\sqrt{y}\)
\(tt:\frac{y-z}{\sqrt{y}+\sqrt{z}}=\sqrt{y}-\sqrt{z};.....\)
\(\Rightarrow\frac{x}{\sqrt{x}+\sqrt{y}}-\frac{y}{\sqrt{y}+\sqrt{x}}+.....-\frac{x}{\sqrt{x}+\sqrt{z}}=0\Rightarrow dpcm\)
Cho \(\sqrt{x}+2\sqrt{y}=10\). Chứng mingh rằng x +y ≥ 20
Áp dụng BĐT bunhiacopxki ta có:
\(A^2=\left(\sqrt{x}+2\sqrt{y}\right)^2\le\left(1^2+2^2\right)\left(x+y\right)=5\left(x+y\right)\)(1)
thay \(\sqrt{x}+2\sqrt{y}=10\)vào 1 ta đc \(10^2\le5\left(x+y\right)< =>x+y\ge20\)
a,Cho biểu thức A=\(\sqrt[3]{20+14\sqrt{2}}+\sqrt[3]{20-14\sqrt{2}}\)
CMR: A là số chính phương
b,Giair phương trình \(\sqrt{x-2}+\sqrt{y+2014}+\sqrt{z-2015}=\frac{1}{2}\left(x+y+z\right)\)
b. ĐK \(\hept{\begin{cases}x-2\ge0\\y+2014\ge0\\z-2015\ge o\end{cases}\Rightarrow\hept{\begin{cases}x\ge2\\y\ge-2014\\z\ge2015\end{cases}}}\)
Ta có \(\sqrt{x-2}+\sqrt{y+2014}+\sqrt{z-2015}=\frac{1}{2}\left(x+y+z\right)\)
Đặt \(\hept{\begin{cases}\sqrt{x-2}=a\ge0\\\sqrt{y+2014}=b\ge0\\\sqrt{z-2015}=c\ge0\end{cases}}\Rightarrow\hept{\begin{cases}x-2=a^2\\y+2014=b^2\\z-2015=c^2\end{cases}\Rightarrow x+y+z}=a^2+b^2+c^2+3\)
Pt \(\Leftrightarrow a+b+c=\frac{1}{2}\left(a^2+b^2+c^2+3\right)\Leftrightarrow a^2+b^2+c^2+3=2a+2b+2c\)
\(\Leftrightarrow\left(a^2-2a+1\right)+\left(b^2-2b+1\right)+\left(c^2-2c+1\right)=0\)
\(\Leftrightarrow\left(a-1\right)^2+\left(b-1\right)^2+\left(c-1\right)^2=0\Leftrightarrow\hept{\begin{cases}a-1=0\\b-1=0\\c-1=0\end{cases}}\)\(\Leftrightarrow a=b=c=1\)
\(\Rightarrow\hept{\begin{cases}x-2=1\\y+2014=1\\z-2015=1\end{cases}\Rightarrow\hept{\begin{cases}x=3\\y=-2013\\z=2016\end{cases}\left(tm\right)}}\)
Vậy \(x=3;y=-2013;z=2016\)