Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Angela jolie
Xem chi tiết
Nguyễn Việt Lâm
16 tháng 2 2020 lúc 8:01

\(\Rightarrow2y+\sqrt{4y^2+1}=\sqrt{x^2+1}-x\)

\(x+\sqrt{x^2+1}=\sqrt{4y^2+1}-2y\)

Cộng vế với vế:

\(x+2y=-x-2y\)

\(\Rightarrow x+2y=0\)

\(\Rightarrow A=\left(x+2y\right)\left(x^2-2xy+4y^2\right)+2019=2019\)

Khách vãng lai đã xóa
Trang Thùy
Xem chi tiết
Akai Haruma
30 tháng 8 2020 lúc 0:17

Lời giải:

$(x+\sqrt{x^2+1})(2y+\sqrt{4y^2+1})=1$

$\Rightarrow (x+\sqrt{x^2+1})(\sqrt{x^2+1}-x)(2y+\sqrt{4y^2+1})=\sqrt{x^2+1}-x$

$\Leftrightarrow 2y+\sqrt{4y^2+1}=\sqrt{x^2+1}-x$

$\Leftrightarrow 2y+x=\sqrt{x^2+1}-\sqrt{4y^2+1}(1)$
Hoàn toàn tương tự ta cũng có:

$x+\sqrt{x^2+1}=\sqrt{4y^2+1}-2y$

$\Leftrightarrow x+2y=\sqrt{4y^2+1}-\sqrt{x^2+1}(2)$

Lấy $(1)+(2)\Rightarrow x+2y=0$

$\Rightarrow 2y=-x$

Do đó:

$x^3+8y^3+2019=x^3+(2y)^3+2019=x^3+(-x)^3+2019=2019$

Kinder
Xem chi tiết
Diệp Nguyễn Thị Huyền
Xem chi tiết
Nguyễn Việt Lâm
13 tháng 8 2021 lúc 0:20

Từ \(\left(x+\sqrt{1+y^2}\right)\left(y+\sqrt{1+x^2}\right)=1\)

\(\Rightarrow\left(x+\sqrt{x^2+1}\right)\left(y+\sqrt{y^2+1}\right)=1\)

(Cách chứng minh tại đây):

Cho (x+\(\sqrt{y^2+1}\))(y+\(\sqrt{x^2+1}\))=1Tìm GTNN của P=2(x2+y2)+x+y  - Hoc24

\(\Rightarrow x+y=0\)

Do đó \(P=100\)

Lê Ngọc Ánh
18 tháng 10 2021 lúc 19:21

x,y thuộc N ôk

Khách vãng lai đã xóa
Lê Hương Giang
Xem chi tiết
Nguyễn Việt Lâm
12 tháng 7 2021 lúc 23:10

\(x=\dfrac{\sqrt{3}\left(\sqrt{\sqrt{3}+1}+1-\sqrt{\sqrt{3}+1}+1\right)}{\left(\sqrt{\sqrt{3}+1}-1\right)\left(\sqrt{\sqrt{3}+1}+1\right)}=\dfrac{2\sqrt{3}}{\sqrt{3}+1-1}=2\)

\(\Leftrightarrow B=\left(2^4-2.2^3-2^2+2.2-1\right)^{2020}=\left(-1\right)^{2020}=1\)

Lunox Butterfly Seraphim
Xem chi tiết
Nguyễn Việt Lâm
18 tháng 10 2020 lúc 11:50

ĐKXĐ: ...

Đặt \(\left\{{}\begin{matrix}\sqrt{3x-1}=a\ge0\\\sqrt{8y+3}=b\ge0\end{matrix}\right.\)

\(\Rightarrow a+2\left(a^2+1\right)=b+2\left(b^2-3\right)+8\)

\(\Leftrightarrow2a^2-2b^2+a-b=0\)

\(\Leftrightarrow\left(a-b\right)\left(2a+2b+1\right)=0\)

\(\Leftrightarrow a=b\Leftrightarrow3x-1=8y+3\) (1)

Lại xét pt đầu:

\(\left(x+4y\right)\left(x^2+16y^2+8xy\right)=8xy\left(x+4y\right)+32xy\left(x+4y-3\sqrt{xy}\right)\)

\(\Leftrightarrow\left(x+4y\right)^3-40xy\left(x+4y\right)+96xy\sqrt{xy}=0\)

Đặt \(\left\{{}\begin{matrix}x+4y=m\\\sqrt{xy}=n\ge0\end{matrix}\right.\)

\(\Rightarrow m^3-40mn^2+96n^3=0\)

\(\Leftrightarrow\left(m-4n\right)\left(m^2+4mn-24n^2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+4y=4\sqrt{xy}\\\left(x+4y\right)^2+4\left(x+4y\right)\sqrt{xy}-24xy=0\end{matrix}\right.\) (2)

Rút x hoặc y từ (1) và thế vào (2) để giải

Dài quá làm biếng.

Hà Vũ Thị Thu
Xem chi tiết
Tùng Nguyễn
Xem chi tiết
Đỗ Thị Ánh Nguyệt
Xem chi tiết
Lightning Farron
3 tháng 3 2018 lúc 20:28

Xét \(pt(2):\) \(\left(2x+4y-1\right)\sqrt{2x-y-1}=\left(4x-2y-3\right)\sqrt{x+2y}\)

\(\Leftrightarrow\left(2x+4y-1\right)^2\left(2x-y-1\right)-\left(4x-2y-3\right)^2\left(x+2y\right)=0\)

\(\Leftrightarrow-8x^3+12x^2y+12x^2+44xy^2+8xy-3x-24y^3-32y^2-11y-1=0\)

\(\Leftrightarrow-\left(x-3y-1\right)\left(8x^2+12xy-4x-8y^2-8y-1\right)=0\)

\(\Rightarrow x=3y+1\) thay vào \(pt(1)\) ta có

\(pt\left(1\right)\Leftrightarrow\left(3y+1\right)^2-5y^2-8y=3\)

\(\Leftrightarrow\left(y-1\right)\left(2y+1\right)=0\Leftrightarrow\left[{}\begin{matrix}y=1\Leftrightarrow x=4\\y=-\dfrac{1}{2}\Leftrightarrow x=-\dfrac{1}{2}\end{matrix}\right.\)