a\(^6\)-b\(^3\)
a) So sánh: \(A=\sqrt[3]{3+\sqrt{3}}+\sqrt[3]{3-\sqrt{3}}\)và \(B=2\sqrt[3]{3}\)
b) Cho \(A=\sqrt{6+\sqrt{6+...+\sqrt{6}}};B=\sqrt[3]{6+\sqrt[3]{6+...+\sqrt[3]{6}}}\)
Chứng minh rằng: \(0< \frac{A-B}{A+B}< 1\)
1)CMR:
a)a3-7a chia hết cho 6
b)a3-13a chia hết cho 6
c)a3+5a chia hết cho 6
d)a3+11a chia hết cho 6
2) Cho a+b+c chia hết cho 6 . CMR:a3+b3+c3 chia hết cho 6
3)a3-a chia hết cho 24a
4)a3b-b3a chia hết cho 6(a,b thuộc Z)
Xét \(\left(a^3+b^3+c^3+d^3\right)-\left(a+b+c+d\right)\)
\(=\left(a^3-a\right)+\left(b^3-b\right)+\left(c^3-c\right)+\left(d^3-d\right)\)
Ta có \(a^3-a=a\left(a^2-1\right)=\left(a-1\right)a\left(a+1\right)⋮6\)(vì tích của 3 số nguyên/số tự nhiên liên tiếp)
Tương tự ta có \(\left(b^3-b\right)⋮6;\left(c^3-c\right)⋮6;\left(d^3-d\right)⋮6\)
\(\Rightarrow\left(a^3-a\right)+\left(b^3-b\right)+\left(c^3-c\right)+\left(d^3-d\right)⋮6\)
\(\Rightarrow\left(a^3+b^3+c^3+d^3\right)-\left(a+b+c+d\right)⋮6\)
Mà \(a+b+c+d⋮6\Rightarrow a^3+b^3+c^3+d^3⋮6\left(ĐPCM\right)\)
P/S: bt làm có bài này thôi :v
3) a=2=>a^3-a=8-2=6 ko chia hết cho 48 vô lí :(
ra nhieu the ai lam het duoc vay ban
cho a,b,c,d >0 và 2(a+b+c+d)>-abcd chứng minh a^2+b^2+c^2+d^2>=abcd
bài 2 cho a,b,c>0 và a+b+c>=abc chứng minh có ít nhất 2 trong 3 bdt sau là đúng 2/a +3/b+ 6/c>=6 2/b + 3/c+ 6/a>=6 2/c + 3/a +6/b >=6
chung minh rang a-3/a+3=b-6/b+6 voi a khac -3,b khac -3 thi a/b=1/2
Cho a+b+c=1/a+1/b+1/c=0,abc khác 0
Chứng minh (a^6+b^6+c^6)/(a^3+b^3+c^3)=abc
Nếu a/b+3/6=0 thì
A.a/b=-3/6 B.a/b= -3/6 C. a/b=-1/2 D cả 3 đáp an đều đúng
Vote 5* nhé
Gạch dưới số mà bạn chọn :
a) Nếu a : 3 và b : 3 thì tổng a + b chia hết cho 6 ; 9 ; 3
b) Nếu a : 2 và b : 4 thì tổng a + b chia hết cho 4 ; 2 ; 6
c) Nếu a : 6 và b : 9 thì tông a + b chia hết cho 6 ; 3 ; 9
a) Nếu a : 3 và b : 3 thì tổng a + b chia hết cho 3
b) Nếu a : 2 và b : 4 thì tổng a + b chia hết cho 2
c) Nếu a : 6 và b : 9 thì tông a + b chia hết cho 3
;llllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll
Gạch dưới số mà bạn chọn :
a) Nếu a : 3 và b : 3 thì tổng a + b chia hết cho 3
b) Nếu a : 2 và b : 4 thì tổng a + b chia hết cho 2
c) Nếu a : 6 và b : 9 thì tông a + b chia hết cho 3
Cho a,b,c là độ dài ba cạnh của tam giác có diện tích bằng \(\sqrt{3}\)Cmr
\(\frac{a^4+b^4}{a^6+b^6}+\frac{b^4+c^4}{b^6+c^6}+\frac{c^4+a^4}{c^6+a^6}\le\frac{3}{4}\)
Cho đẳng thức a.b = 3.6. Tỉ lệ thức nào sau đây sai:
A. \(\dfrac{a}{b}=\dfrac{3}{6}\). B. \(\dfrac{a}{3}=\dfrac{6}{b}\) C. \(\dfrac{a}{6}=\dfrac{3}{b}\)
cho a,b,c >0 và a+b+c=1 tìm min F =\(\frac{a^6}{b^3+c^3}\)+ \(\frac{b^6}{c^3+a^3}\)+\(\frac{c^6}{a^3+b^3}\)
Áp dụng BĐT Cauchy-Schwarz dạng Engel ta có:
\(F=\frac{a^6}{b^3+c^3}+\frac{b^6}{c^3+a^3}+\frac{c^6}{a^3+b^3}\)
\(\ge\frac{\left(a^3+b^3+c^3\right)^2}{2\left(a^3+b^3+c^3\right)}=\frac{a^3+b^3+c^3}{2}\)
Áp dụng BĐT AM-GM ta có:
\(a^3+\frac{1}{27}+\frac{1}{27}\ge3\sqrt[3]{a^3\cdot\frac{1}{27}\cdot\frac{1}{27}}=3\cdot\frac{a}{9}=\frac{a}{3}\)
Tương tự ta cũng có: \(b^3+\frac{1}{27}+\frac{1}{27}\ge\frac{b}{3};c^3+\frac{1}{27}+\frac{1}{27}\ge\frac{c}{3}\)
\(\Rightarrow a^3+b^3+c^3+\frac{2}{9}\ge\frac{a+b+c}{3}=\frac{1}{3}\Rightarrow a^3+b^3+c^3\ge\frac{1}{9}\)
\(\Rightarrow F\ge\frac{a^3+b^3+c^3}{2}\ge\frac{\frac{1}{9}}{2}=\frac{1}{18}\)
Xảy ra khi \(a=b=c=\frac{1}{3}\)