Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Got many jams
Xem chi tiết
Nguyễn Việt Lâm
24 tháng 12 2020 lúc 13:44

1.

\(\Leftrightarrow6x^2-12x+7-6\sqrt{6x^2-12x+7}-7=0\)

Đặt \(\sqrt{6x^2-12x+7}=t>0\)

\(\Rightarrow t^2-6t-7=0\Rightarrow\left[{}\begin{matrix}t=-1\left(loại\right)\\t=7\end{matrix}\right.\)

\(\Leftrightarrow\sqrt{6x^2-12x+7}=7\)

\(\Leftrightarrow6x^2-12x+7=49\Rightarrow x=1\pm2\sqrt{2}\)

2.

\(\Delta'=\left(m+1\right)^2-m^2-3=2m-2>0\Rightarrow m>1\)

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m+1\right)\\x_1x_2=m^2+3\end{matrix}\right.\)

\(\left(x_1+x_2\right)^2-2x_1x_2=2x_1x_2+8\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-4x_1x_2-8=0\)

\(\Leftrightarrow4\left(m+1\right)^2-4\left(m^2+3\right)-8=0\)

\(\Leftrightarrow2m-4=0\Rightarrow m=2\)

Phương Nhi Nguyễn
Xem chi tiết
Nguyễn Hoàng Minh
16 tháng 10 2021 lúc 9:46

\(ĐK:x\in R\)

Đặt \(x^2-2x=a\), PTTT:

\(-a+\sqrt{6a+7}=0\\ \Leftrightarrow\sqrt{6a+7}=a\\ \Leftrightarrow a^2-6a-7=0\\ \Leftrightarrow\left[{}\begin{matrix}a=7\\a=-1\left(loại.do.a=\sqrt{6a+7}\ge0\right)\end{matrix}\right.\\ \Leftrightarrow a=7\\ \Leftrightarrow x^2-2x-7=0\\ \Leftrightarrow\left[{}\begin{matrix}x=1+2\sqrt{2}\\x=1-2\sqrt{2}\end{matrix}\right.\)

 

Vũ Ngọc Duy
Xem chi tiết
Dương Thị Thu Hiền
Xem chi tiết
阮芳邵族
Xem chi tiết
Lê Thị Thục Hiền
6 tháng 10 2019 lúc 21:42

pt <=>\(\sqrt{6x^2-12x+7}-\left(x^2-2x\right)=0\)

<=>\(\sqrt{6\left(x^2-2x+1\right)+1}-\left(x^2-2x+1\right)+1=0\)

<=> \(\sqrt{6\left(x-1\right)^2+1}-\left(x-1\right)^2=-1\)

Đặt \(\left(x-1\right)^2=a\left(a\ge0\right)\)

\(\sqrt{6a+1}-a=-1\)

<=> \(\sqrt{6a+1}=a-1\)

=> \(6a+1=a^2-2a+1\)

<=> \(a^2-2a-6a+1-1=0\)

<=>\(a^2-8a=0\) <=>a(a-8)=0

=> \(\left[{}\begin{matrix}a=0\\a=8\end{matrix}\right.\) <=>\(\left[{}\begin{matrix}\left(x-1\right)^2=0\\\left(x-1\right)^2=8\end{matrix}\right.\) <=> \(\left[{}\begin{matrix}x=1\left(ktm\right)\\x=2\sqrt{2}+1\left(tm\right)\\x=1-2\sqrt{2}\left(tm\right)\end{matrix}\right.\)

Trần
Xem chi tiết
Hoàng Lê Bảo Ngọc
13 tháng 8 2016 lúc 12:45

Điều kiện xác định của pt : \(6x^2-12x+7\ge0\) => Với mọi số thực thì pt xác định

Ta có : \(2x-x^2+\sqrt{6x^2-12x+7}=0\)

\(\Leftrightarrow-\left(6x^2-12x+7\right)+6\sqrt{6x^2-12x+7}+7=0\)

Đặt \(t=\sqrt{6x^2-12x+7},t\ge0\) . pt trở thành : \(-t^2+6t+7=0\) \(\Leftrightarrow\left[\begin{array}{nghiempt}t=7\left(\text{nhận}\right)\\t=-1\left(\text{loại}\right)\end{array}\right.\)

Với \(t=7\) ta có pt : \(6x^2-12x+7=49\)

\(\Leftrightarrow6x^2-12x-42=0\) \(\Leftrightarrow\left[\begin{array}{nghiempt}x=1-2\sqrt{2}\\x=1+2\sqrt{2}\end{array}\right.\)

 

Nguyễn Phương HÀ
13 tháng 8 2016 lúc 12:45

Hỏi đáp Toán

Lightning Farron
13 tháng 8 2016 lúc 12:47

\(pt\Leftrightarrow\sqrt{6\left(x^2-2x\right)+7}=x^2-2x\)

Đặt \(t=2x-x^2\left(t\ge0\right)\) pt trở thành

\(\sqrt{6t+7}=t\).Ta có 2 vế dương bình phương đc:

\(6t+7=t^2\)

\(\Leftrightarrow t^2-6t-7=0\)

\(\Leftrightarrow t^2-7t+t-7=0\)

\(\Leftrightarrow t\left(t-7\right)+\left(t-7\right)=0\)

\(\Leftrightarrow\left(t+1\right)\left(t-7\right)=0\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}t=-1\left(loai\right)\\t=7\left(tm\right)\end{array}\right.\).

Từ t=7 ta tìm được các giá trị của \(\left[\begin{array}{nghiempt}x=1-\sqrt{8}\\x=\sqrt{8}+1\end{array}\right.\)

 

kirf
Xem chi tiết
Phương
Xem chi tiết
Học tốt
20 tháng 10 2018 lúc 21:51

Đặt \(\sqrt{6x^2-12x+7}=t\left(t\ge0\right)\)

<=>\(t^2-7=6x^2-12x\)

\(\Leftrightarrow\dfrac{t^2-7}{6}=x^2-2x\)

Ta có pt mới:

\(\dfrac{7-t^2}{6}+t=0\)

\(\Leftrightarrow t^2-6t-7=0\)

\(\Leftrightarrow t^2-2\cdot t\cdot3+9-9-7=0\)

\(\Leftrightarrow\left(t-3\right)^2=16\)

\(\Rightarrow\left[{}\begin{matrix}t=7\\t=-1\end{matrix}\right.\)(loại t=-1)

Với t=7

=>\(\sqrt{6x^2-12x+7}=7\)

<=>6x2-12x+7=49

<=>6x2-12x-42=0

<=>x2-2x-7=0

<=>(x-1)2=8

=>\(\left[{}\begin{matrix}x=1+2\sqrt{2}\\x=1-2\sqrt{2}\end{matrix}\right.\)

Phương Nhi Nguyễn
Xem chi tiết
nthv_.
15 tháng 10 2021 lúc 23:45