Điều kiện xác định của pt : \(6x^2-12x+7\ge0\) => Với mọi số thực thì pt xác định
Ta có : \(2x-x^2+\sqrt{6x^2-12x+7}=0\)
\(\Leftrightarrow-\left(6x^2-12x+7\right)+6\sqrt{6x^2-12x+7}+7=0\)
Đặt \(t=\sqrt{6x^2-12x+7},t\ge0\) . pt trở thành : \(-t^2+6t+7=0\) \(\Leftrightarrow\left[\begin{array}{nghiempt}t=7\left(\text{nhận}\right)\\t=-1\left(\text{loại}\right)\end{array}\right.\)
Với \(t=7\) ta có pt : \(6x^2-12x+7=49\)
\(\Leftrightarrow6x^2-12x-42=0\) \(\Leftrightarrow\left[\begin{array}{nghiempt}x=1-2\sqrt{2}\\x=1+2\sqrt{2}\end{array}\right.\)
\(pt\Leftrightarrow\sqrt{6\left(x^2-2x\right)+7}=x^2-2x\)
Đặt \(t=2x-x^2\left(t\ge0\right)\) pt trở thành
\(\sqrt{6t+7}=t\).Ta có 2 vế dương bình phương đc:
\(6t+7=t^2\)
\(\Leftrightarrow t^2-6t-7=0\)
\(\Leftrightarrow t^2-7t+t-7=0\)
\(\Leftrightarrow t\left(t-7\right)+\left(t-7\right)=0\)
\(\Leftrightarrow\left(t+1\right)\left(t-7\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}t=-1\left(loai\right)\\t=7\left(tm\right)\end{array}\right.\).
Từ t=7 ta tìm được các giá trị của \(\left[\begin{array}{nghiempt}x=1-\sqrt{8}\\x=\sqrt{8}+1\end{array}\right.\)