câu 1 : Giải pt sau
a . \(2x-2\sqrt{2x}-1=0\)
câu 2 : thu gọn các biểu thức sau
\(A=\frac{3+\sqrt{5}}{3-\sqrt{5}}+\frac{3-\sqrt{5}}{3+\sqrt{5}}\)
\(B=\sqrt{12-6\sqrt{3}}+\sqrt{21-12\sqrt{3}}\)
\(C=5\left(\sqrt{2+\sqrt{3}}+\sqrt{3-\sqrt{5}}-\sqrt{\frac{5}{2}}\right)^2+\left(\sqrt{2-\sqrt{3}}+\sqrt{3+\sqrt{5}}-\sqrt{\frac{3}{x}}\right)^2\)
CHUYÊN ĐỀ GIẢI PHƯƠNG TRÌNH
a, \(\sqrt{2x-1}+\sqrt{x^2+3}=4-x\) f, \(2x^2-11x+23=4\sqrt{x+1}\)
b, \(\sqrt{x^2+x+1}=\sqrt{x^2-3x-1}+2x+1\) g, \(\frac{4}{x}+\sqrt{x-\frac{1}{x}}=x+\sqrt{2x-\frac{5}{x}}\)
c, \(\left|x-16\right|^4+\left|x-17\right|^3=1\) h, \(9\left(\sqrt{4x+1}-\sqrt{3x-2}\right)=x+3\)
d, \(\left(x+1\right)\sqrt{x+2}+\left(x+6\right)\sqrt{x+7}=x^2+7x+12\)
e, \(\left(4x^3-x+3\right)^3-x^3=\frac{3}{2}\)
Câu 1. Giải các phương trình, hệ phương trình sau:
a. \(\sqrt{x^2+x+4}+\sqrt{x^2+x+1}=\sqrt{2x^2+2x+9}\)
b. \(\left\{{}\begin{matrix}x^2-xy-2=0\\x^2+y^2+2x+2y-2=0\end{matrix}\right.\) (x,y \(\in R\))
Xác định m để các phương trình sau có nghiệm:
a, m2(x-1) = x+m-2 với x > 0
b, (m-1)(x-1)+m-2 = 0 với x \(\ge\) 3
c, \(\frac{\left(2m+1\right)x+5}{\sqrt{9-x^2}}=\frac{\left(2m+3\right)x=m-4}{\sqrt{9-x^2}}\)
Giải các phương trình:
a) \(\left|x^2+1\right|=\left|x^3-5x^2-2x+4\right|\)
b) \(\left|\frac{2x+1}{x-5}\right|=x+5\)
c) \(\left|x^2-1\right|+\left|x\right|=1\)
d) \(\frac{3}{\left|x+3\right|-1}=\left|x+2\right|\)
e) \(\left|x+1\right|+\left|x-1\right|=1+\left|1-x^2\right|\)
g) \(\left|3-2x\right|-\left|x\right|=5\left(\left|2+3x\right|+x-2\right)\)
Caau1 : Có tất cả bao nhiêu giá trị nguyên ko dương của tham số m để pt \(\sqrt{2x+m}=x-1\) có nghiệm duy nhất
Câu 2: Giả sử phương trình 2x2- 4mx - 1 = 0 có 2 nghiệm x1, x2 . Tìm GTNN của biểu thức T = |x1-x2|
a. \(\frac{a}{ax-1}\)+ \(\frac{b}{bx-1}\)= \(\frac{a+b}{\left(a+b\right)x-1}\) giải và biện luận pt
b. a(ax+b\(^2\)) -a\(^2\)+ b\(^2\)(x+a)
c. a(x-b)-1= b(1-2x)
Cho a,b,c>0 và ab+bc+ca=3 . Chứng minh \(\frac{1}{1+a^2\left(b+c\right)}+\frac{1}{1+b^2\left(c+a\right)}+\frac{1}{1+c^2\left(a+b\right)}\le\frac{1}{abc}\)
Cho a,b,c>0 Chứng minh \(\frac{2}{\left(a+b\right)^2}+\frac{2}{\left(b+c\right)^2}+\frac{2}{\left(c+a\right)^2}\ge\frac{1}{a^2+bc}+\frac{1}{b^2+ca}+\frac{1}{c^2+ab}\)