§1. Đại cương về phương trình

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Văn Thắng Hồ

Cho a,b,c>0 và ab+bc+ca=3 . Chứng minh \(\frac{1}{1+a^2\left(b+c\right)}+\frac{1}{1+b^2\left(c+a\right)}+\frac{1}{1+c^2\left(a+b\right)}\le\frac{1}{abc}\)

Nguyễn Việt Lâm
17 tháng 8 2020 lúc 18:16

\(3=ab+bc+ca\ge3\sqrt[3]{abc}\Rightarrow abc\le1\)

\(\Rightarrow VT\le\frac{1}{abc+a^2\left(b+c\right)}+\frac{1}{abc+b^2\left(c+a\right)}+\frac{1}{abc+c^2\left(a+b\right)}\)

\(\Rightarrow VT\le\frac{1}{a\left(ab+bc+ca\right)}+\frac{1}{b\left(ab+bc+ca\right)}+\frac{1}{c\left(ab+bc+ca\right)}\)

\(\Rightarrow VT\le\frac{1}{3}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=\frac{ab+bc+ca}{3abc}=\frac{1}{abc}\)

Dấu "=" xảy ra khi \(a=b=c=1\)


Các câu hỏi tương tự
Văn Thắng Hồ
Xem chi tiết
Quang Huy Điền
Xem chi tiết
Nguyễn Hoàng Linh
Xem chi tiết
Alice
Xem chi tiết
Văn Thắng Hồ
Xem chi tiết
Chu Văn Long
Xem chi tiết
Trần Thị Vân Anh
Xem chi tiết
lê mai hương
Xem chi tiết
Nguyễn Dân Lập
Xem chi tiết