giải pt:
\(sin\left(\frac{x+\Pi}{5}\right)=\frac{-1}{2}\)
Giải các pt lượng giác sau
1) \(cos^2\left(x-\frac{\pi}{6}\right)-sin^2\left(x-\frac{\pi}{6}\right)=sin\left(x+\frac{\pi}{3}\right)\)
2) \(sin^4-sin^4\left(x+\frac{\pi}{2}\right)=sin\left(x+\frac{\pi}{3}\right)\)
3) \(8cos^3\left(x-\frac{\pi}{3}\right)-1=0\)
\(\text{1) }cos^2\left(x-\frac{\pi}{6}\right)-sin^2\left(x-\frac{\pi}{6}\right)=sin\left(x+\frac{\pi}{3}\right)\\ \Leftrightarrow cos\left(2x-\frac{\pi}{3}\right)=cos\left(\frac{\pi}{6}-x\right)\\ \Leftrightarrow\left[{}\begin{matrix}2x-\frac{\pi}{3}=\frac{\pi}{6}-x+m2\pi\\2x-\frac{\pi}{3}=x-\frac{\pi}{6}+n2\pi\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{6}+\frac{m2\pi}{3}\\x=\frac{\pi}{6}+n2\pi\end{matrix}\right.\\\Leftrightarrow x=\frac{\pi}{6}+\frac{k2\pi}{3} \)
\(2\text{) }sin^4x-sin^4\left(x+\frac{\pi}{2}\right)=sin\left(x+\frac{\pi}{3}\right)\\ \Leftrightarrow sin^4x-cos^4x=sin\left(x+\frac{\pi}{3}\right)\\ \Leftrightarrow sin^2x-cos^2x=sin\left(x+\frac{\pi}{3}\right)\\ \Leftrightarrow cos\left(\pi-2x\right)=cos\left(\frac{\pi}{6}-x\right)\\ \Leftrightarrow\left[{}\begin{matrix}\pi-2x=\frac{\pi}{6}-x+m2\pi\\\pi-2x=x-\frac{\pi}{6}+n2\pi\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{5\pi}{6}-m2\pi\\x=\frac{7\pi}{18}-\frac{n2\pi}{3}\end{matrix}\right.\)
\(3\text{) }pt\Leftrightarrow cos\left(x-\frac{\pi}{3}\right)=\frac{1}{2}=cos\frac{\pi}{3}\\ \Leftrightarrow\left[{}\begin{matrix}x-\frac{\pi}{3}=\frac{\pi}{3}+m2\pi\\x-\frac{\pi}{3}=-\frac{\pi}{3}+n2\pi\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{2\pi}{3}+m2\pi\\x=n2\pi\end{matrix}\right.\)
a/
\(\Leftrightarrow cos\left(2x-\frac{\pi}{3}\right)=sin\left(x+\frac{\pi}{3}\right)=cos\left(\frac{\pi}{6}-x\right)\)
\(\Rightarrow\left[{}\begin{matrix}2x-\frac{\pi}{3}=\frac{\pi}{6}-x+k2\pi\\2x-\frac{\pi}{3}=x-\frac{\pi}{6}+k2\pi\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{6}+\frac{k2\pi}{3}\\x=\frac{\pi}{6}+k2\pi\end{matrix}\right.\) \(\Rightarrow x=\frac{\pi}{6}+\frac{k2\pi}{3}\)
b/
\(\Rightarrow sin^4x-cos^4x=sin\left(x+\frac{\pi}{3}\right)\)
\(\Leftrightarrow\left(sin^2x-cos^2x\right)\left(sin^2x+cos^2x\right)=sin\left(x+\frac{\pi}{3}\right)\)
\(\Leftrightarrow-cos2x=sin\left(x+\frac{\pi}{3}\right)\)
\(\Leftrightarrow cos2x=-sin\left(x+\frac{\pi}{3}\right)=cos\left(x+\frac{5\pi}{6}\right)\)
\(\Rightarrow\left[{}\begin{matrix}2x=x+\frac{5\pi}{6}+k2\pi\\2x=-x-\frac{5\pi}{6}+k2\pi\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\frac{5\pi}{6}+k2\pi\\x=-\frac{5\pi}{18}+\frac{k2\pi}{3}\end{matrix}\right.\)
c/
\(\Leftrightarrow cos^3\left(x-\frac{\pi}{3}\right)=\frac{1}{8}\)
\(\Leftrightarrow cos\left(x-\frac{\pi}{3}\right)=\frac{1}{2}\)
\(\Leftrightarrow cos\left(x-\frac{\pi}{3}\right)=cos\left(\frac{\pi}{3}\right)\)
\(\Rightarrow\left[{}\begin{matrix}x-\frac{\pi}{3}=\frac{\pi}{3}+k2\pi\\x-\frac{\pi}{3}=-\frac{\pi}{3}+k2\pi\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\frac{2\pi}{3}+k2\pi\\x=k2\pi\end{matrix}\right.\)
giải pt
\(sin^2\left(2x+\frac{\pi}{6}\right)-6sin\left(x+\frac{\pi}{6}\right).cos\left(x+\frac{\pi}{6}\right)+2=0\)
Giải pt: sin\(\left(2x-\frac{\pi}{6}\right)\)=sin\(\left(\frac{\pi}{6}-x\right)+2\)
Do \(VT=sin\left(2x-\frac{\pi}{6}\right)\le1\)
\(sin\left(\frac{\pi}{6}-x\right)\ge-1\Rightarrow VT=sin\left(\frac{\pi}{6}-x\right)+2\ge-1+2=1\)
\(\Rightarrow VP\ge VT\)
Dấu "=" xảy ra khi và chỉ khi:
\(\left\{{}\begin{matrix}sin\left(2x-\frac{\pi}{6}\right)=1\\sin\left(\frac{\pi}{6}-x\right)=-1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}2x-\frac{\pi}{6}=\frac{\pi}{2}+k2\pi\\\frac{\pi}{6}-x=-\frac{\pi}{2}+l2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{\pi}{3}+k\pi\\x=\frac{2\pi}{3}+l2\pi\end{matrix}\right.\) \(\Rightarrow x=\varnothing\)
giải pt
\(2\sin\left(2x+\frac{9\pi}{4}\right)+7\sqrt{2}\sin x+\sqrt{2}\sin\left(x+\frac{11\pi}{2}\right)=4\sqrt{2}\)
2(sin2xcos\(\frac{9\pi}{4}\) + sin\(\frac{9\pi}{4}\)cosx) + 7\(\sqrt{2}\)sinx + \(\sqrt{2}\)( sinx cos\(\frac{11\pi}{2}\)+sin\(\frac{11\pi}{2}\)cosx ) =4\(\sqrt{2}\)
\(\sqrt{2}\)sin2x + \(\sqrt{2}\)cosx +7\(\sqrt{2}\)sinx -\(\sqrt{2}\)cosx =4\(\sqrt{2}\)
2\(\sqrt{2}\)sinxcosx+7\(\sqrt{2}\)sinx - 4\(\sqrt{2}\) =0
PHẦN CÒN LẠI C TỰ LM NỐT NHÉ
giải pt
a) \(\sqrt{3}sinx+cosx=2\)
b) \(sin\left(\frac{\pi}{4}-2x\right)+sin\left(\frac{\pi}{4}+x\right)=\frac{\sqrt{2}}{2}\)
\(\Leftrightarrow\frac{\sqrt{3}}{2}sinx+\frac{1}{2}cosx=1\)
\(\Leftrightarrow sin\left(x+\frac{\pi}{6}\right)=1\)
\(\Leftrightarrow x+\frac{\pi}{6}=\frac{\pi}{2}+k2\pi\)
\(\Leftrightarrow x=\frac{\pi}{3}+k2\pi\)
b.
\(\sqrt{2}sin\left(\frac{\pi}{4}-2x\right)+\sqrt{2}sin\left(\frac{\pi}{4}+x\right)=1\)
\(\Leftrightarrow cos2x-sin2x+sinx+cosx=1\)
\(\Leftrightarrow1-2sin^2x-2sinx.cosx+sinx+cosx=1\)
\(\Leftrightarrow-2sinx\left(sinx+cosx\right)+sinx+cosx=0\)
\(\Leftrightarrow\left(sinx+cosx\right)\left(1-2sinx\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sin\left(x+\frac{\pi}{4}\right)=0\\sinx=\frac{1}{2}\end{matrix}\right.\) \(\Leftrightarrow x=...\)
Giải pt : sin\(\left(2x+\frac{\pi}{3}\right)\)=sin\(\left(\frac{\pi}{6}-x\right)+\sqrt{3}\)
giải pt sau
\(sin^2\left(\frac{\pi}{6}-x\right)=\frac{1}{4}\)
Lời giải:
\(\sin ^2(\frac{\pi}{6}-x)=\frac{1}{4}\)
\(\Rightarrow \left[\begin{matrix} \sin (\frac{\pi}{6}-x)=\frac{1}{2}\\ \sin (\frac{\pi}{6}-x)=\frac{-1}{2}\end{matrix}\right.\)
Nếu \(\sin (\frac{\pi}{6}-x)=\frac{1}{2}\Rightarrow \left[\begin{matrix} \frac{\pi}{6}-x=\frac{\pi}{6}-2k\pi \\ \frac{\pi}{6}-x=\frac{5\pi}{6}-2k\pi \end{matrix}\right.\)
\(\Rightarrow \left[\begin{matrix} x=2k\pi \\ x=2k\pi-\frac{2}{3}\pi \end{matrix}\right.\) với $k$ nguyên.
Nếu \(\sin (\frac{\pi}{6}-x)=\frac{-1}{2}\Rightarrow \left[\begin{matrix} \frac{\pi}{6}-x=\frac{-\pi}{6}-2k\pi \\ \frac{\pi}{6}-x=\frac{7\pi}{6}-2k\pi \end{matrix}\right.\)
\(\Rightarrow \left[\begin{matrix} x=\frac{\pi}{3}+2k\pi \\ x=(2k-1)\pi\end{matrix}\right.\) với $k$ nguyên.
Gộp cả 2TH trên lại ta suy ra \(x=n\pi \) hoặc \(x=n\pi+\frac{\pi}{3}\) với $n$ là số nguyên bất kỳ.
giải pt
a) \(\sin^2\left(\frac{x}{2}-\frac{\pi}{4}\right).tan^2x-cos^2\frac{x}{2}=0\)
b) \(3tan^3x-tanx+\frac{3\left(1+sinx\right)}{cos^2x}-8cos^2\left(\frac{\pi}{4}-\frac{x}{2}\right)=0\)
giải các pt
a) \(sin\left(\frac{3\pi}{10}-\frac{x}{2}\right)=\frac{1}{2}sin\left(\frac{\pi}{10}+\frac{3x}{2}\right)\)
b) \(4\left(sin^2x+\frac{1}{sin^2x}\right)+4\left(sinx+\frac{1}{sinx}\right)=7\)
c) \(9\left(\frac{2}{cosx}+cosx\right)+2\left(cos^2x+\frac{4}{cos^2x}\right)=1\)
d) \(2\left(cos^2x+\frac{4}{cos^2x}\right)+9\left(\frac{2}{cosx}-cosx\right)=1\)
a/
\(\Leftrightarrow cos\left(\frac{x}{2}+\frac{\pi}{5}\right)=\frac{1}{2}sin\left(\frac{3x}{2}+\frac{\pi}{10}\right)\)
Đặt \(\frac{x}{2}+\frac{\pi}{5}=a\Rightarrow\frac{x}{2}=a-\frac{\pi}{5}\Rightarrow\frac{3x}{2}=3a-\frac{3\pi}{5}\)
Pt trở thành:
\(cosa=\frac{1}{2}sin\left(3a-\frac{3\pi}{5}+\frac{\pi}{10}\right)\)
\(\Leftrightarrow cosa=\frac{1}{2}sin\left(3a-\frac{\pi}{2}\right)\)
\(\Leftrightarrow cosa=-\frac{1}{2}sin\left(\frac{\pi}{2}-3a\right)=-\frac{1}{2}cos3a\)
\(\Leftrightarrow cos3a+2cosa=0\)
\(\Leftrightarrow4cos^3a-3cosa+2cosa=0\)
\(\Leftrightarrow4cos^3a-cosa=0\)
\(\Leftrightarrow cosa\left(4cos^2a-1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}cosa=0\\cosa=\frac{1}{2}\\cosa=-\frac{1}{2}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}cos\left(\frac{x}{2}+\frac{\pi}{5}\right)=0\\cos\left(\frac{x}{2}+\frac{\pi}{5}\right)=\frac{1}{2}\\cos\left(\frac{x}{2}+\frac{\pi}{5}\right)=-\frac{1}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\frac{x}{2}+\frac{\pi}{5}=\frac{\pi}{2}+k\pi\\\frac{x}{2}+\frac{\pi}{5}=\pm\frac{\pi}{3}+k2\pi\\\frac{x}{2}+\frac{\pi}{5}=\pm\frac{2\pi}{3}+k2\pi\end{matrix}\right.\) \(\Rightarrow x=...\) (5 nghiệm bạn tự biến đổi)
b/
ĐKXĐ: ...
Đặt \(sinx+\frac{1}{sinx}=a\Rightarrow sin^2x+\frac{1}{sin^2x}=a^2-2\)
Pt trở thành:
\(4\left(a^2-2\right)+4a=7\)
\(\Leftrightarrow4a^2+4a-15=0\Rightarrow\left[{}\begin{matrix}a=\frac{3}{2}\\a=-\frac{5}{2}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}sinx+\frac{1}{sinx}=\frac{3}{2}\\sinx+\frac{1}{sinx}=-\frac{5}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}sin^2x-\frac{3}{2}sinx+1=0\left(vn\right)\\sin^2x+\frac{5}{2}sinx+1=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}sinx=-\frac{1}{2}\\sinx=-2\left(l\right)\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-\frac{\pi}{6}+k2\pi\\x=\frac{7\pi}{6}+k2\pi\end{matrix}\right.\)
c/
ĐKXĐ: ...
Đặt \(cosx+\frac{2}{cosx}=a\Rightarrow cos^2x+\frac{4}{cos^2x}=a^2-4\)
Pt trở thành:
\(9a+2\left(a^2-4\right)=1\)
\(\Leftrightarrow2a^2+9a-9=0\)
Pt này nghiệm xấu quá bạn :(
d/ĐKXĐ: ...
Đặt \(\frac{2}{cosx}-cosx=a\Rightarrow cos^2x+\frac{4}{cos^2x}=a^2+4\)
Pt trở thành:
\(2\left(a^2+4\right)+9a-1=0\)
\(\Leftrightarrow2a^2+9a+7=0\Rightarrow\left[{}\begin{matrix}a=-1\\a=-\frac{7}{2}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\frac{2}{cosx}-cosx=-1\\\frac{2}{cosx}-cosx=-\frac{7}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}-cos^2x+cosx+2=0\\-cos^2x+\frac{7}{2}cosx+2=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}cosx=-1\\cosx=2\left(l\right)\\cosx=4\left(l\right)\\cosx=-\frac{1}{2}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\pi+k2\pi\\x=\pm\frac{2\pi}{3}+k2\pi\end{matrix}\right.\)