Phân tích đa thức thành nhân tử
x^2+2xy+9y^2-25
phân tích các đa thức sau thành nhân tử
x^2-9x-y^2-9y
\(x^2-9x-y^2-9y\)
\(=\left(x^2-y^2\right)-\left(9x+9y\right)\)
\(=\left(x-y\right)\left(x+y\right)-9\left(x+y\right)\)
\(=\left(x+y\right)\left(x-y-9\right)\)
Phân tích đa thức thành nhân tử
x^3-2xy-x^2y+2y^2
\(x^3-2xy-x^2y+2y^2=\left(x^3-x^2y\right)-\left(2xy-2y^2\right)\)
\(=x^2\left(x-y\right)-2y\left(x-y\right)=\left(x^2-2y\right)\left(x-y\right)\)
\(=x^2\left(x-y\right)-2y\left(x-y\right)\)
\(=\left(x-y\right)\left(x^2-2y\right)\)
Phân tích đa thức thành nhân tử
x\(^4\)+2x\(^3\)+10x-25
\(x^4+2x^3+10x-25\)
\(=x^4+5x^2+2x^3+10x-5x^2-25\)
\(=\left(x^2+5\right)\left(x^2+2x-5\right)\)
phân tích đa thức thành nhân tử
x^4-10x^2y^2+25-4x^2y^2-16xy-16
2x^m+n x^m +x^m+2n
Phân tích đa thức thành nhân tử
x^2+5x-36
\(x^2+5x-36=\left(x-4\right)\left(x+9\right)\)
Phân tích đa thức thành nhân tử
x^2y^2-x^2+6xy-9y^2
9-x^2+2xy-y^2
a) Ta có: \(x^2y^2-x^2+6xy-9y^2\)
\(=x^2y^2-\left(x^2-6xy+y^2\right)\)
\(=\left(xy\right)^2-\left(x-3y\right)^2\)
\(=\left(xy-x+3y\right)\left(xy+x-3y\right)\)
b) Ta có: \(9-x^2+2xy-y^2\)
\(=9-\left(x^2-2xy+y^2\right)\)
\(=9-\left(x-y\right)^2\)
\(=\left(9-x+y\right)\left(9+x-y\right)\)
Phân tích đa thức thành nhân tử
x^2-4y^2+x+2y
x2 - 4y2 + x + 2y
= ( x2 - 4y2 ) + ( x + 2y )
= ( x - 2y ) ( x + 2y ) + ( x + 2y )
= ( x + 2y ) ( x - 2y + 1 )
Phân tích đa thức thành nhân tử
x^3-4x^2+8x-8
\(x^3-4x^2+8x-8=x^2\left(x-2\right)-2x\left(x-2\right)+4\left(x-2\right)=\left(x-2\right)\left(x^2-2x+4\right)\)
\(x^3-4x^2+8x-8\)
\(=\left(x-2\right)\left(x^2+2x+4\right)-4x\left(x-2\right)\)
\(=\left(x-2\right)\left(x^2-2x+4\right)\)
phân tích đa thức thành nhân tử
x^2(x-3)-4x+12
\(x^2\left(x-3\right)-4x+12=\left(x-3\right)\left(x-2\right)\left(x+2\right)\)
=x²(x-3)-4x+3.4
=x²(x-3)-4(x+3)
=x²(x-3)+4(x-3)
=(x-3)(x²+4)
=(x-3)(x²+2²)
=(x-3)(x-2)(x+2)