Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyen Minh Anh
Xem chi tiết
Lấp La Lấp Lánh
15 tháng 10 2021 lúc 8:18

Chọn B

OH-YEAH^^
15 tháng 10 2021 lúc 8:19

B

Thị Thư Nguyễn
15 tháng 10 2021 lúc 8:19

B

Chanhh
Xem chi tiết
Hồng Phúc
31 tháng 8 2021 lúc 15:47

Tách ra mỗi câu một lần.

Dài quá không ai làm đâu.

Nhìn nản lắm.

Nguyễn Lê Phước Thịnh
31 tháng 8 2021 lúc 23:36

Câu 3: 

a: \(49^2=2401\)

b: \(51^2=2601\)

c: \(99\cdot100=9900\)

Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
26 tháng 9 2023 lúc 23:39

a)

i) Các số hạng của khai triển trên là: \({a^3},3{a^2}b,3a{b^2},{b^3}\)

ii) Các hệ số của khai triển trên là: \(1;3;3;1\)

iii) Tính các giá trị \(C_3^0,C_3^1,C_3^2,C_3^3\) ta được

\(C_3^0 = 1,C_3^1 = 3,C_3^2 = 3,C_3^3 = 1\)

Các giá trị của \(C_3^0,C_3^1,C_3^2,C_3^3\) bằng với các hệ số của khai triển đã cho

b)

\(\begin{array}{l}{\left( {a + b} \right)^4} = \left( {a + b} \right){\left( {a + b} \right)^3} = \left( {a + b} \right)\left( {{a^3} + 3{a^2}b + 3a{b^2} + {b^3}} \right)\\ = {a^4} + 4{a^3}b + 6{a^2}{b^2} + 4a{b^3} + {b^4}\end{array}\)

Tính giá trị của \(C_4^0,C_4^1,C_4^2,C_4^3,C_4^4\) ta được

\(C_4^0 = 1,C_4^1 = 4,C_4^2 = 6,C_4^3 = 4,C_4^4 = 1\)

Vậy ta được khai triển là:

\({\left( {a + b} \right)^4} = {a^4} + 4{a^3}b + 6{a^2}{b^2} + 4a{b^3} + {b^4}\)

c)

Dự đoán công thức \({\left( {a + b} \right)^5} = {a^5} + 5{a^4}b + 10{a^3}{b^2} + 10{a^2}{b^3} + 5a{b^4} + {b^5}\)

Tính lại ta có

\(\begin{array}{l}{\left( {a + b} \right)^5} = {\left( {a + b} \right)^2}{\left( {a + b} \right)^3} = \left( {{a^2} + 2ab + {b^2}} \right)\left( {{a^3} + 3{a^2}b + 3a{b^2} + {b^3}} \right)\\ = {a^5} + 5{a^4}b + 10{a^3}{b^2} + 10{a^2}{b^3} + 5a{b^4} + {b^5}\end{array}\)

Vậy công thức dự đoán là chính xác.

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
3 tháng 2 2018 lúc 4:52

a) Sử dụng công thức bình phương của tổng với số hạng thứ nhất là a + b và số hạng thứ hai là c.

Biến đổi thu được A = a 2   +   b 2   +   c 2  + 2ab + 2bc + 2 ac;

b)  a 2   +   b 2   +   c 2  - 2ab + 2bc - 2 ac.

chuche
Xem chi tiết
chuche
Xem chi tiết
chuche
Xem chi tiết
chuche
Xem chi tiết
Nguyễn Hoàng Minh
13 tháng 10 2021 lúc 15:55

\(2,\\ a,a^3+b^3=a^3=3a^2b+3ab^2+b^3-3a^2b-3ab^2\\ =\left(a+b\right)^3-3ab\left(a+b\right)\\ b,a^3+b^3+c^3-3abc\\ =\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc\\ =\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2\right)-3ab\left(a+b+c\right)\\ =\left(a+b+c\right)\left(a^2+b^2+c^2-ac-ab-bc\right)\)

Minh Ngọc Sakura Sadako
13 tháng 10 2021 lúc 16:10

khó v. e ko giải đc đâu

 

chuche
Xem chi tiết