Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Đào Phương Thảo
Xem chi tiết
Nguyễn Lê Phước Thịnh
19 tháng 5 2022 lúc 9:16

a: \(x^2-8x+21=x^2-8x+16+5=\left(x-4\right)^2+5>=5\)

Dấu '=' xảy ra khi x=4

b: \(16x^2+16x-30\)

\(=16x^2+2\cdot4x\cdot2+4-34\)

\(=\left(4x+2\right)^2-34>=-34\)

Dấu '=' xảy ra khi x=-1/2

d: \(-x^2+12x+34\)

\(=-\left(x^2-12x-34\right)\)

\(=-\left(x^2-12x+36-70\right)\)

\(=-\left(x-6\right)^2+70< =70\)

Dấu '=' xảy ra khi x=6

Law Trafargal
Xem chi tiết
Phạm Minh Quang
10 tháng 10 2019 lúc 0:35

\(4B=4x^2+4xy+4y^2-8x-12y+8076\)

= \(\left(2y\right)^2-4y\left(3-x\right)+\left(3-x\right)^2-\left(3-x\right)^2\)

\(+\left(2x\right)^2-8x+8076\)

= \(\left(2y-3+x\right)^2+3x^2-2x+8076\)

đến đây thì dễ rồi

Trương Võ Thanh Ngân
Xem chi tiết
Nguyễn Nam
24 tháng 11 2017 lúc 12:05

\(2x^2-8x+14\)

\(=2x^2-8x+8+6\)

\(=\left(2x^2-8x+8\right)+6\)

\(=2\left(x^2-4x+4\right)+6\)

\(=2\left(x^2-2.x.2+2^2\right)+6\)

\(=2\left(x-2\right)^2+6\)

Vậy GTNN của \(2x^2-8x+14\) bằng 6 khi \(x-2=0\Leftrightarrow x=2\)

vũ tiến đạt
24 tháng 11 2017 lúc 12:11

Đã thêm vào Video

Phạm Trần Linh Anh
Xem chi tiết
Hoàng Lê Bảo Ngọc
20 tháng 12 2016 lúc 18:03

Vì \(x^2-8x+22=\left(x^2-8x+16\right)+6=\left(x-4\right)^2+6>0\) nên A luôn xác định.

Từ giả thiết ta có \(A\left(x^2-8x+22\right)=2x^2-16x+43\Leftrightarrow x^2\left(A-2\right)-8x\left(A-2\right)+\left(22A-43\right)=0\)

Để tồn tại GTNN của A thì phải tồn tại giá trị của x thỏa mãn GTNN đó, tức là PT trên có nghiệm.

Xét \(\Delta'=16\left(A-2\right)^2-\left(A-2\right)\left(22A-43\right)=\left(A-2\right)\left(11-6A\right)\ge0\)

\(\Leftrightarrow\frac{11}{6}\le A\le2\)

Vậy min A = 11/6 , max A = 2 (còn giá trị của x bạn tự tìm)

Trần Quốc Đạt
20 tháng 12 2016 lúc 19:05

Mình bổ sung cho lời giải bạn Ngọc một chút (dù gì đây là bài lớp 8),

Bạn có thể tìm trước min, max của A ngoài nháp, lúc trình bày để né Delta bạn viết như sau:

VD: minA=\(\frac{11}{6}\).

Bước 1: Làm cho mẫu có số 6. \(A=\frac{6\left(2x^2-16x+43\right)}{6\left(x^2-8x+22\right)}\).

Bước 2: Làm cho tử có số 11. \(A=\frac{11\left(x^2-8x+22\right)+x^2-8x+16}{6\left(x^2-8x+22\right)}\).

Nếu bạn làm đúng thì phần dư ra là một bình phương, quả nhiên  \(x^2-8x+16=\left(x-4\right)^2\).

Vậy \(A=\frac{11}{6}+\frac{\left(x-4\right)^2}{6\left(x^2-8x+22\right)}\ge\frac{11}{6}\). Đẳng thức xảy ra tại \(x=4\).

Hình như biểu thức không có max.

Trần minh tam 0801204
Xem chi tiết
Vũ Quang Vinh
4 tháng 8 2017 lúc 14:28

Phần GTNN:
Câu 1:
Ta thấy: \(M=x^2-8x+5=x^2-8x+16-11=\left(x-4\right)^2-11\)
Do \(\left(x-4\right)^2\ge0\) ( mọi x )
\(\Rightarrow\left(x-4\right)^2-11\ge-11\) ( mọi x )
=> GTNN của đa thức \(M=\left(x-4\right)^2-11\) bằng -11 khi và chỉ khi:
\(\left(x-4\right)^2=0\)
\(\Rightarrow x-4=0\)
\(\Rightarrow x=4\)
Vậy GTNN của đa thức \(M=x^2-8x+5\) bằng -11 khi và chỉ khi x = 4.

Câu 2:
Ta thấy: \(F=2x^2+6x-4=2\left(x^2+3x-2\right)=2\left(x^2+3x+\frac{9}{4}-\frac{17}{4}\right)=2\left[\left(x+\frac{3}{2}\right)^2-\frac{17}{4}\right]\)
Do \(\left(x+\frac{3}{2}\right)^2\ge0\) ( mọi x )
\(\Rightarrow\left(x+\frac{3}{2}\right)^2-\frac{17}{4}\ge\frac{-17}{4}\) ( mọi x )
\(\Rightarrow2\left[\left(x+\frac{3}{2}\right)^2-\frac{17}{4}\right]\ge\frac{-17}{2}\) ( mọi x )
=> GTNN của đa thức \(F=2\left[\left(x+\frac{3}{2}\right)^2-\frac{17}{4}\right]\) bằng \(\frac{-17}{2}\) khi và chỉ khi:
\(\left(x+\frac{3}{2}\right)^2-\frac{17}{4}=\frac{-17}{4}\)
\(\Rightarrow\left(x+\frac{3}{2}\right)^2=0\)
\(\Rightarrow x+\frac{3}{2}=0\)
\(\Rightarrow x=\frac{-3}{2}\)
Vậy GTNN của đa thức \(F=2x^2+6x-4\) bằng \(\frac{-17}{4}\) khi và chỉ khi \(x=\frac{-3}{2}\).

Vo Thi Minh Dao
Xem chi tiết
Nguyễn Việt Lâm
9 tháng 4 2019 lúc 20:53

\(\sqrt{x^2-4x+5}=\sqrt{\left(x-2\right)^2+1}\ge1\)

Đặt \(\sqrt{x^2-4x+5}=a\Rightarrow a\ge1\)

\(M=2\left(x^2-4x+5\right)+\sqrt{x^2-4x+5}-4\)

\(M=2a^2+a-4=2a^2+3a-2a-3-1\)

\(M=a\left(2a+3\right)-\left(2a+3\right)-1\)

\(M=\left(a-1\right)\left(2a+3\right)-1\)

Do \(a\ge1\Rightarrow\left\{{}\begin{matrix}a-1\ge0\\2a+3>0\end{matrix}\right.\) \(\Rightarrow\left(a-1\right)\left(2a+3\right)\ge0\Rightarrow M\ge-1\)

\(\Rightarrow M_{min}=-1\) khi \(a=1\Leftrightarrow x=2\)

tran thi lan huong
Xem chi tiết
Nguyễn Thùy Dương
23 tháng 10 2017 lúc 12:38

\(\left|x-1\right|+2C=\left|x-1,5\right|+\left|1-x\right|\\ \Leftrightarrow\left|x-1\right|+2C=\left|x-1,5\right|+\left|x-1\right|\\ \Rightarrow2C=\left|x-1,5\right|\ge0\\ \Rightarrow C\ge0\)

Để C=0 thì

\(\left|x-1,5\right|=0\\ \Leftrightarrow x-1,5=0\\ \Leftrightarrow x=1,5\)

Vậy...

Dũng Nguyễn
6 tháng 9 2018 lúc 21:57

Ta có:\(x^2+8x=x^2+2.x.4+4^2-16\)

\(=\left(x+4\right)^2-16\)

Do \(\left(x+4\right)^2\ge0\) với mọi x (dấu "=" xảy ra \(\Leftrightarrow x=-4\))

\(\Rightarrow\left(x+4\right)^2-16\ge-16\) hay \(x^2+8x\ge-16\) (dấu "=" xảy ra \(\Leftrightarrow x=-4\))

Vậy giá trị nhỏ nhất của biểu thức \(x^2+8x\)\(-16\) tại \(x=-4\)

kuroba kaito
7 tháng 4 2018 lúc 22:31

\(B=\dfrac{8x^2-6x+1}{x^2}\)

= \(\dfrac{8x^2}{x^2}-\dfrac{6x}{x^2}+\dfrac{1}{x^2}\)

= \(1-\dfrac{6}{x}+\dfrac{1}{x^2}\)

đặt t=\(\dfrac{1}{x}\) ta có

1-6y+y2

= (y2-6y+9)-8

= (y-3)2-8

do (y-3)2 ≥ 0 ∀ x

⇔ (y-3)2 -8 ≥ -8

⇔ B ≥ -8

nim B =-8 dấu "=" xảy ra khi

y-3=0 ⇔ y=3 ⇔ \(\dfrac{1}{x}=3\) ⇔ x=\(\dfrac{1}{3}\)

vậy nim B =-8 khi x=\(\dfrac{1}{3}\)