Tinh : A=(sin40+cos10)2 -(cos40+sin10)2 +cos140
Câu 1: Chứng minh
a) \(\dfrac{cosx+sin2x}{1+sinx-cos2x}=cotx\)
b) \(\dfrac{1+sin3x-cos6x}{cos3x+sin6x}=tan3x\)
Câu 2: Tính
a) cos10.cos50.cos70
b) sin10.sin50.sin70
c) cos20.cos40.cos60.cos60
d) sin20.sin40.sin60.sin80
Câu 3: Trong mặt phẳng Oxy, cho tam giác ABC có điểm A(-4;2) và đường cao CH : x-y-1=0; trung điểm của BC là I(-2;3). Tìm tọa độ đỉnh B
Câu 4: Trong mặt phẳng Oxy, cho tam giác ABC có điểm B(-1;2) và đường cao AH : x+y-2=0; trung điểm của AC là I(-2;1). Viết phương trình cạnh AC
Câu 5: Cho các số dương x,y thỏa mãn x+ y = \(\dfrac{1}{2}\). Tìm giá trị nhỏ nhất của
P=\(\dfrac{1}{x}+\dfrac{1}{y}\)
Câu 6: Cho số thực x thỏa mãn x>4. Tìm giá trị nhỏ nhất của \(Q=9x+\dfrac{1}{x-4}\)
Câu 7: Cho số dương x thỏa mãn 0 ≤ x ≤ 7. Tìm giá trị lớn nhất của \(Q=9x\left(7-x\right)\)
Câu 8: Trong mặt phẳng Oxy cho đường tròn (C): x2 + y2 - 2x + 2y - 7 = 0 và đường thẳng d: x + y + 1 = 0. Viết phương trình đường thẳng △ song song với đường thẳng d và cắt đường tròn (C) theo dây cung có độ dài bằng 2.
Câu 9: Trong mặt phẳng Oxy cho điểm A(-3;4) và đường thẳng d: 3x + 4y + 18 = 0. Viết phương trình đường tròn tâm A và cắt đường thẳng d theo dây cung có độ dài bằng 24
Câu 10: Trong mặt phẳng Oxy cho đường tròn (C): x2 + y2 - 2x + 2y - 7 =0 và đường thẳng d: x + y + 1=0. Viết phương trình đường thẳng △ song song với đường thẳng d và cắt đường tròn (C) theo dây cung AB sao cho tam giác ABI đều (I là tâm của (C))
Giúp em với ạ <3 Được câu nào hay câu đó :( tsau em thi rùi
Câu 5. Cho x,y dương thỏa mãn \(x+y=\dfrac{1}{2}\).Tìm giá trị nhỏ nhất của
\(P=\dfrac{1}{x}+\dfrac{1}{y}\)
Giải:
\(P=\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{x+y}{xy}=\dfrac{\dfrac{1}{2}}{xy}=\dfrac{2}{xy}\)
--> P nhỏ nhất khi \(xy\) lớn nhất
Ta có:
\(x^2+y^2\ge2xy\) ( BĐT AM-GM )
\(\Leftrightarrow\left(x+y\right)^2\ge4xy\)
\(\Leftrightarrow1\ge4xy\)
\(\Leftrightarrow xy\le\dfrac{1}{4}\)
\(\Rightarrow P\ge2:\dfrac{1}{4}=8\)
Vậy \(Min_P=8\)
Dấu "=" xảy ra khi \(x=y=\dfrac{1}{4}\)
A = sin40*cos50 + sin50*cos40
A= \(\frac{1}{2}\)[sin(-10)+sin90] +\(\frac{1}{2}\)(sin10+sin90)
A= \(\frac{1}{2}\)(-sin10 +1) +\(\frac{1}{2}\)(sin10 +1)
A=\(\frac{1}{2}\)(-sin10+sin10)+1
A= 1
rút gọn và tính giá trị các biểu thức ( k dùng máy tính)
A=\(\cos10^0+\cos40^0+\cos70^0+...+\cos170^0\)
B= \(\sin5^0+\sin10^0+\sin15^0+....+\sin360^0\)
C= \(\cos^22^0+\cos^24^0+\cos^26^0+...+\cos^288^0\)
\(A=cos10+cos170+cos40+cos140+cos70+cos110\)
\(A=cos10+cos\left(180-10\right)+cos40+cos\left(180-40\right)+cos70+cos\left(180-70\right)\)
\(A=cos10-cos10+cos40-cos40+cos70-cos70\)
\(A=0\)
\(B=sin5+sin355+sin10+sin350+...+sin175+sin185+sin360\)
\(B=sin5+sin\left(360-5\right)+sin10+sin\left(360-10\right)+...+sin175+sin\left(360-175\right)+sin360\)
\(B=sin5-sin5+sin10-sin10+...+sin175-sin175+sin360\)
\(B=sin360=0\)
\(C=cos^22+cos^288+cos^24+cos^284+...+cos^244+cos^246\)
\(C=cos^22+cos^2\left(90-2\right)+cos^24+cos^2\left(90-4\right)+...+cos^244+cos^2\left(90-44\right)\)
\(C=cos^22+sin^22+cos^24+sin^24+...+cos^244+sin^244\)
\(C=1+1+...+1\) (có \(\frac{44-2}{2}+1=22\) số 1)
\(\Rightarrow C=22\)
Tính giá trị biểu thức:
\(A=\dfrac{1}{\sin10^0}-\dfrac{\sqrt{3}}{\cos10^0}\)
Ta có:
\(A=\dfrac{\cos10^0-\sqrt{3}\sin10^0}{\sin10^0\cos10^0}\)
\(=\dfrac{4\left(\dfrac{1}{2}cos10^0-\dfrac{\sqrt{3}}{2}sin10^0\right)}{2sin10^0cos10^0}=\dfrac{4\left(s\text{in3}0^0cos10^0-cos30^0s\text{in}10^0\right)}{sin20^0}=\dfrac{4sin\left(30^0-10^0\right)}{s\text{in2}0^0}=4\)
\(sin10^0+sin40^0-cos50^0-cos80^0\)
Ta có: \(\sin10^0+\sin40^0-\cos50^0-\cos80^0\)
\(=\left(\sin10^0-\cos80^0\right)+\left(\sin40^0-\cos50^0\right)\)
\(=\left(\cos80^0-\cos80^0\right)+\left(\cos50^0-\cos50^0\right)\)
\(=0\)
\(\sin10^0+\sin40^0-\cos50^0-\cos80^0=0\)0
\(\sin10^o+\sin40^o-\cos50^o-\cos80^o\)
\(=\sin10^o+\sin40^o-\sin40^o-\sin10^o\)
\(=0\)
tính \(S=\dfrac{1}{sin10}-\dfrac{\sqrt{3}}{cos10}\)
Tính giá trị biểu thức sau:
\(\frac{1}{sin10}-\frac{\sqrt{3}}{cos10}\)
Mn giúp mk với
a) cos20°×cos40°×cos60°×cos80°
b) B= sin10°×sin50°×sin70°
\(A=cos20.cos40.cos60.cos80\)
\(A.sin20=sin20.cos20.cos40.cos60.cos80\)
\(Asin20=\frac{1}{2}sin40.cos40.cos80.cos60\)
\(Asin20=\frac{1}{4}sin80.cos80.cos60\)
\(Asin20=\frac{1}{8}sin160.cos60\)
\(Asin20=\frac{1}{8}sin20.cos60\)
\(A=\frac{1}{8}cos60=\frac{1}{16}\)
\(B=sin10.cos40.cos20\)
\(Bcos10=sin10.cos10.cos20.cos40\)
\(Bcos10=\frac{1}{2}sin20.cos20.cos40\)
\(Bcos10=\frac{1}{4}sin40.cos40\)
\(Bcos10=\frac{1}{8}sin80=\frac{1}{8}cos10\)
\(B=\frac{1}{8}\)
Em cần gấp vì sắp thi, cám ơn nhiều ạ
sin(x) + cos(x) +3= \(\frac{1}{sin10}\)- \(\frac{\sqrt{3}}{cos10}\)