Tính giá trị biểu thức sau:
\(\frac{1}{sin10}-\frac{\sqrt{3}}{cos10}\)
Tinh : A=(sin40+cos10)2 -(cos40+sin10)2 +cos140
Cho \(\alpha\) , \(\beta\in\left(0;\dfrac{\pi}{2}\right)\) và sin \(\alpha\) = \(\dfrac{1}{\sqrt{5}}\) ; Cos \(\alpha\) = \(\dfrac{1}{\sqrt{10}}\) . Tính Cos \(\left(\alpha+\beta\right)\)
Cho sin a = \(\dfrac{1}{\sqrt{3}}\) với 0 < a < \(\dfrac{\pi}{2}\) , khi đó giá trị \(\cos\left(a+\dfrac{\pi}{3}\right)\) bằng ?
a) tính các giá trị lượng giác của góc alpha biết
1. cos \(\alpha\) = \(\dfrac{-2}{\sqrt{5}}\) và \(\dfrac{-\pi}{2}\)< \(\alpha\) < 0
2. tan \(\alpha\) = - 2 và \(\dfrac{\pi}{2}\)< \(\alpha\) < \(\pi\)
3. cot \(\alpha\) = 3 và \(\pi\) < \(\alpha\) < \(\dfrac{3\pi}{2}\)
b)
1. Cho tan x = - 2 và 90° < x < 180°. Tính A = \(\dfrac{2\sin x+\cos x}{\cos x-3\sin x}\)
2. Cho tan x = - 2 . Tính B = \(\dfrac{2\sin x+3\cos x}{3\sin x-2\cos x}\)
a) tính các giá trị lượng giác của góc alpha biết
1. cos \(\alpha\) = \(\dfrac{-2}{\sqrt{5}}\) và \(\dfrac{-\pi}{2}\)< \(\alpha\) < 0
2. tan \(\alpha\) = - 2 và \(\dfrac{\pi}{2}\)< \(\alpha\) < \(\pi\)
3. cot \(\alpha\) = 3 và \(\pi\) < \(\alpha\) < \(\dfrac{3\pi}{2}\)
b)
1. Cho tan x = - 2 và 90° < x < 180°. Tính A = \(\dfrac{2\sin x+\cos x}{\cos x-3\sin x}\)
2. Cho tan x = - 2 . Tính B = \(\dfrac{2\sin x+3\cos x}{3\sin x-2\cos x}\)
rút gọn và tính giá trị các biểu thức ( k dùng máy tính)
A=\(\cos10^0+\cos40^0+\cos70^0+...+\cos170^0\)
B= \(\sin5^0+\sin10^0+\sin15^0+....+\sin360^0\)
C= \(\cos^22^0+\cos^24^0+\cos^26^0+...+\cos^288^0\)
sin^3(1+cotx)+cos^3(1+tanx)=\(\sqrt{2}\)cosx
\(2\sqrt{2}\) sin(sinx+\(\dfrac{\Pi}{4}\))=\(\dfrac{1}{sinx}\)+\(\dfrac{1}{cosx}\)
\(\sqrt{\dfrac{1+sinx}{1-sinx}}+\sqrt{\dfrac{1-sinx}{1+sinx}}=?\) (sao cho gọn nhất)