Kiểm tra lại đề bài, \(cosa=\dfrac{1}{\sqrt{10}}\) hay \(cos\beta=\dfrac{1}{\sqrt{10}}\)?
Kiểm tra lại đề bài, \(cosa=\dfrac{1}{\sqrt{10}}\) hay \(cos\beta=\dfrac{1}{\sqrt{10}}\)?
Cho \(\alpha-\beta=\frac{\pi}{3}\). Tính giá trị bthuc
a) \(A=\left(cos\alpha+cos\beta\right)^2+\left(sin\alpha+sin\beta\right)^2\)
b) \(B=\left(cos\alpha+sin\beta\right)^2+\left(cos\beta-sin\alpha\right)^2\)
Chứng minh rằng:
\(\sqrt{\dfrac{1+cos\alpha}{1-cos\alpha}}-\sqrt{\dfrac{1-cos\alpha}{1+cos\alpha}}=2cot\alpha\left(0< \alpha< \dfrac{\pi}{2}\right)\).
Đơn giản các biểu thức sau:
G = \(cos\left(\alpha-5\pi\right)+sin\left(-\dfrac{3\pi}{2}+\alpha\right)-tan\left(\dfrac{\pi}{2}+\alpha\right).cot\left(\dfrac{3\pi}{2}-\alpha\right)\)
H = \(cot\left(\alpha-2\pi\right).cos\left(\alpha-\dfrac{3\pi}{2}\right)+cos\left(\alpha-6\pi\right)-2sin\left(\alpha-\pi\right)\)
Rút gọn \(P=\sin\left(-\alpha\right)+\sin^2\left(\pi+\alpha\right)+\cos\left(\dfrac{\pi}{2}-\alpha\right)+\cos^2\left(\pi-\alpha\right)\)
Rút gọn biểu thức:
a, A = \(\dfrac{4\sin^2\alpha}{1-\cos\dfrac{\alpha}{2}}\)
b, B = \(\dfrac{1+\cos\alpha-\sin\alpha}{1-\cos\alpha-\sin\alpha}\)
c, C = \(\dfrac{1+\sin\alpha-2\sin^2\left(45^o-\dfrac{\pi}{2}\right)}{4\cos\dfrac{\alpha}{2}}\)
Đơn giản biểu thức sau:
\(G=Cos\left(\alpha-5\pi\right)+sin\left(-\dfrac{3\pi}{2}+\alpha\right)-tan\left(\dfrac{\pi}{2}+\alpha\right).cot\left(\dfrac{3\pi}{2}-\alpha\right)\)
.
Chứng minh các đẳng thức sau:
a, \(\sin^4\alpha-\cos^4\alpha+1=2\sin^2\alpha\)
b,\(\dfrac{\sin^2\alpha+2\cos^2\alpha-1}{\cot^2\alpha}=\sin^2\alpha\)
c, \(\dfrac{1-\sin^2\alpha.\cos^2\alpha}{\cos^2\alpha}-\cos^2\alpha=\tan^2\alpha\)
d, \(\dfrac{\sin^2\alpha-\tan^2\alpha}{\cos^2\alpha-\cot^2\alpha}=\tan^6\alpha\)
e, \(\left(1+\cot\alpha\right)\sin^3\alpha+\left(1+\tan\alpha\right)\cos^3\alpha=\sin\alpha.\cos\alpha\)
f,\(\dfrac{\left(\sin\alpha+\cos\alpha\right)^2-1}{\cot\alpha-\sin\alpha.\cos\alpha}=2\tan^2\alpha\)
Đơn giản biểu thức sau:
\(F=sin\left(\pi+\alpha\right)-cos\left(\dfrac{\pi}{2}-\alpha\right)+cot\left(2\pi-\alpha\right)+tan\left(\dfrac{3\pi}{2}-\alpha\right)\)
C=\(\frac{2a^2sin30^o+2absin^o\left(bcos45^o\right)^2}{\left(acos0^o\right)^2-\left(btan45^0\right)^2}\)
D=\(\frac{\left[tan\left(\alpha-\beta\right)+sin\alpha\right].2cos\alpha}{cos\alpha+sin9\beta}\) (α=2β=60o)