x2-10x+y2-10y+74=0
Phân tích đa thức thành nhân tử
x2-y2-10x-10y
\(=\left(x-y\right)\left(x+y\right)-10\left(x+y\right)=\)
\(=\left(x+y\right)\left(x-y-10\right)\)
= (x - y). (x + y) - 10 ( x - y)
= [( x + y) - 10)] . ( x - y)
\(x^2\) - y2 - 10\(x\) - 10y
= (\(x^2\) - y2) - 10.(\(x\) + y)
= (\(x-y\))(\(x\) + y) - 10.(\(x\) + y)
= (\(x\) + y).(\(x\) - y - 10)
Tính giá trị biểu thức:
a) M=x2-2xy+y2-10x+10y với x-y=9
b) N=x3+3x2y+3xy2+y3+x2+2xy+y2 với x=10-y
a) Ta có: \(M=x^2-2xy+y^2-10x+10y\)
\(=\left(x-y\right)^2-10\left(x-y\right)\)
\(=9^2-10\cdot9=-9\)
Với các số thực dương x, y và x2+ y2 ≤ 2, tìm GTLN của P= \(\sqrt{x\left(14x+10y\right)}\) + \(\sqrt{y\left(14y+10x\right)}\)
Ta có: \(4\ge2\left(x^2+y^2\right)\ge\left(x+y\right)^2\)
\(\Rightarrow x+y\le2\)
Ta có: \(P=\sqrt{x\left(14x+10y\right)}+\sqrt{y\left(14y+10x\right)}\)
\(=\sqrt{\dfrac{24x\left(14x+10y\right)}{24}}+\sqrt{\dfrac{24y\left(14y+10x\right)}{24}}\le\dfrac{\dfrac{24x+14x+10y}{2}}{\sqrt{24}}+\dfrac{\dfrac{24y+14y+10x}{2}}{\sqrt{24}}\)
\(\Leftrightarrow P\le\dfrac{24\left(x+y\right)}{2\sqrt{6}}\le\dfrac{24.2}{2\sqrt{6}}=4\sqrt{6}\)
Dấu "=" xảy ra ⇔ x = y = 1
Đường tròn x2+ y2 - 10x -11= 0 có bán kính bằng bao nhiêu?
A.6
B.2
C. 4
D. 6
Ta có hệ số a= 5; b= 0 và c= -11 nên bán kính là R= a 2 + b 2 - c = 6
Chọn A.
Cho phương trình (C): x 2 + y 2 - 8x + 10y + 2m - 1 = 0. Giá trị của tham số m để (C) là phương trình đường tròn là:
A. m < 21
B. m ≤ 21
C. m < 1/2
D. m ≤ 1/2
Đáp án: A
Ta có:
(C): x 2 + y 2 - 8x + 10y + 2m - 1 = 0 ⇔ (x - 4 ) 2 + (y + 5 ) 2 = 42 - 2m
Để (C) là phương trình đường tròn thì 42 - 2m > 0 ⇔ m < 21
Tâm đường tròn x2+ y2- 10x + 1= 0 cách trục Oy một khoảng bằng
A. -5
B. 0
C. 10
D. 5
Ta có: đường tròn: x2+ y2- 10x + 1= 0 => (x- 5)2 + y2= 24 có tâm I(5;0) .Khoảng cách từ I đến Oy là d ( I ; O y ) = 5
Chọn D.
Cho đường cong (C): x2+ y2- 8x +10y +m= 0. Với giá trị nào của m thì (C) là đường tròn có bán kính bằng 7 ?
A.m= 4
B.m= 8
C.m= -8
D.m= -2
Ta có hệ số a= 4; b= -5 và c= m.
Để C là đường tròn có bán kính R= 7 thì:
R = 4 2 + 5 2 - m = 7 ⇔ m = - 8
Chọn C.
Tọa độ tậm của mặt cầu S : x 2 + y 2 + z 2 - 10 x + 2 y + 26 z + 170 = 0 là
A. (5;-1;-13)
B. (-5;1;13)
C. (10;-2;-26)
D. (-10;2;26)
Tọa độ tậm của mặt cầu (S): x 2 + y 2 + z 2 - 10x + 2y +26z + 170 = 0 là
A. (5; -1; -13)
B. (-5; 1; 13)
C. (10; -2; -26)
D. (-10; 2; 26)
Đáp án A.
Phương trình mặt cầu (S) có tâm O(a,b,c) bán kính R là:
Suy ra tọa độ tâm mặt cầu là (5; -1; -13)