Ta có: đường tròn: x2+ y2- 10x + 1= 0 => (x- 5)2 + y2= 24 có tâm I(5;0) .Khoảng cách từ I đến Oy là d ( I ; O y ) = 5
Chọn D.
Ta có: đường tròn: x2+ y2- 10x + 1= 0 => (x- 5)2 + y2= 24 có tâm I(5;0) .Khoảng cách từ I đến Oy là d ( I ; O y ) = 5
Chọn D.
Trong mặt phẳng với hệ tọa độ cho đường tròn hai đường tròn (C): x2+ y2- 2x -2y +1= 0 và (C’) : x2+ y2+ 4x -5 = 0 cùng đi qua M( 1;0) .Viết phương trình đường thẳng d qua M cắt hai đường tròn lần lượt tại A; B sao cho MA= 2 MB.
A. 6x+ 6+ y= 0 hoặc -6x+ y- 6= 0
B. 2x+ 3y + 6= 0 hoặc 3x-2y + 3= 0
C. 2x+ y- 6= 0 hoặc x+ y- 6 = 0
D. 6x+ y – 6= 0 hoặc 6x –y-6= 0
Trong mặt phẳng tọa độ Oxy , Cho hai điểm A(3;5), B(1;-7) và đường thẳng d:4x+3y-5=0. 1) viết phương trình đường tròn(c) có tâm thuộc trục Oy và đi qua hai điểm A,B 2) viết phương trình tiếp tuyến của (C) biết tiếp tuyến song song với đường thẳng d 3) tìm tọa độ điểm M thuộc đường thẳng d Sao cho |3MA+2MB+MC| Đạt giá trị nhỏ nhất
Cho đường tròn C có phương trình: x2 + y2 – 4x + 8y – 5 = 0
a, Tìm tọa độ tâm và bán kính của (C)
b, Viết phương trình tiếp tuyến với (C) đi qua điểm A(-1; 0)
c, Viết phương trình tiếp tuyến với (C) vuông góc với đường thẳng: 3x – 4y + 5 = 0.
Bài tập :
B1 Viết phương trình đường tròn (C1) có bán kính R1 = 1 , tiếp xúc với trục Ox và có tâm nằm trên đường thẳng denta : 3x - y +7 = 0
B2 Cho đường tròn (C) : x2 + y2 - 2x - 4y - 4 = 0 và đường thẳng (d) : 3x + 4y +4 = 0 . Chứng minh rằng (d) tiếp xúc với (C)
Cho phương trình x 2 + y 2 + m − 3 x + 2 m + 1 y + 3 m + 10 = 0 .Giá trị của m để phương trình trên là phương trình của một đường tròn có tâm nằm trên đường thẳng ∆: x + 2y + 5 = 0 là:
A.m = 0
B.m = 11/5
C.m = 2
D.không tồn tại m
Cho đường tròn (C) x2+ y2- 2x + 6y + 6= 0 và đường thẳng d: 4x -3y + 5= 0. Đường thẳng d’ song song với đường thẳng d và chắn trên (C) một dây cung có độ dài bằng 2 3 có phương trình là:
A. 4x- 3y+ 8= 0
B.4x-3y- 8= 0 hoặc 4x – 3y -18= 0
C. 4x- 3y+ 10= 0
D. 4x + 3y + 8 = 0
Tìm tâm và bán kính của các đường tròn sau:
a, x2 + y2– 2x – 2y - 2 = 0
b, 16x2 + 16y2 + 16x – 8y -11 = 0
c, x2 + y2 - 4x + 6y – 3 = 0
Đường tròn x2+ y2 - 10x -11= 0 có bán kính bằng bao nhiêu?
A.6
B.2
C. 4
D. 6
Trong mặt phẳng Oxy, cho hai điểm A(2;0) và B(6;4). Viết phương trình đường tròn (C) tiếp xúc với trục hoành tại A và khoảng cách từ tâm của (C) đến B bằng 5.