Điều kiện để phương trình đã cho là phương trình đường tròn là:
m − 3 2 2 + 2 m + 1 2 2 − ( 3 m + 10 ) > 0 ⇔ m 2 − 6 m + 9 4 + 4 m 2 + 4 m + 1 4 − 3 m − 10 > 0 ⇔ 5 m 2 − 2 m + 10 4 − 3 m − 10 > 0 ⇔ 5 m 2 − 2 m + 10 − 12 m − 40 > 0 ⇔ 5 m 2 − 14 m − 30 > 0 ⇔ m < 7 − 199 5 m > 7 + 199 5
Với điều kiện trên phương trình đã cho là phương trình đường tròn có tâm I − m − 3 2 ; − 2 m + 1 2
Do tâm I nằm trên đường thẳng ∆: x + 2y + 5 = 0 nên ta có:
− m − 3 2 + 2. − 2 m + 1 2 + 5 = 0 ⇔ − ( m − 3 ) + 2 ( − 2 m − 1 ) + 2.5 = 0 ⇔ − m + 3 − 4 m − 2 + 10 = 0 ⇔ − 5 m + 11 = 0 ⇔ m = 11 5
Kết hợp điều kiện, suy ra không có giá trị nào của m thỏa mãn,
Chú ý. Nhiều học sinh quên điều kiện để phương trình là phương trình của một đường tròn nên dẫn đến kết quả m = 11/5
ĐÁP ÁN D