Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
An Nhiên
Xem chi tiết
Quang Duy
15 tháng 7 2017 lúc 19:23

a) \(VT=\left(x^2-y^2\right)^{1995}=\left[\left(x-y\right)\left(x+y\right)\right]^{1995}\)

\(=\left(x+y\right)^{1995}.\left(x-y\right)^{1995}=VP\)

\(\Rightarrow\)đpcm

Cristiano Ronaldo
Xem chi tiết
Nguyễn Anh Quân
30 tháng 11 2017 lúc 20:50

Ta có tính chất : a^n . b^n = (a.b)^n

=> (x+y)^1995 . (x-y)^1995 = [(x+y).(x-y)] ^1995 = (x^2-y^2)^1995

=> ĐPCM

k mk nha

Nguyễn Hữu Tín
Xem chi tiết
Thiên An
19 tháng 4 2016 lúc 13:03

a) Ta có \(\left(C\right):y=\frac{-x+2}{x+1}=-1+\frac{3}{x+1}\)

Dời hệ trục Oxy về hệ trục XIY với công thức dời trục \(\begin{cases}x=X-1\\y=Y-1\end{cases}\)

Ta có phương trình hệ trục tọa độ mới \(Y=\frac{3}{X}\)

Trong hệ trục tọa độ mới, ta giả sử \(M\left(m;\frac{3}{m}\right);N\left(n;\frac{3}{n}\right);P\left(p;\frac{3}{p}\right)\)

Gọi \(H\left(x;y\right)\) là trực tâm của tam giác MNP, ta có : \(\begin{cases}\overrightarrow{MH}.\overrightarrow{NP}=0\\\overrightarrow{NH}.\overrightarrow{MP}=0\end{cases}\) (a)

Mà \(\overrightarrow{MH}=\left(x-m;y-\frac{3}{m}\right);\overrightarrow{NP}=\left(p-n;\frac{3}{p}-\frac{3}{n}\right);\overrightarrow{NH}=\left(x-n;y-\frac{3}{n}\right);\overrightarrow{MP}=\left(p-m;\frac{3}{p}-\frac{3}{m}\right)\)

Nên (a) \(\Leftrightarrow\begin{cases}x-m-\frac{3}{np}\left(y-\frac{3}{m}\right)=0\\x-n-\frac{3}{mp}\left(y-\frac{3}{n}\right)=0\end{cases}\) \(\Leftrightarrow\begin{cases}x-\frac{3}{np}y-m+\frac{9}{mnp}=0\\x-\frac{3}{mp}y-n+\frac{9}{mnp}=0\end{cases}\)

             \(\Leftrightarrow\begin{cases}x=-\frac{9}{mnp}\\y=-\frac{mnp}{3}\end{cases}\)

Suy ra \(H\left(-\frac{9}{mnp};-\frac{mnp}{3}\right)\)

Vì \(y_H=\frac{3}{x_H}\) nên \(H\in\left(C\right)\)\(\Rightarrow\) điều phải chứng minh

Thiên An
19 tháng 4 2016 lúc 13:40

b) \(B\left(b;\frac{2m-b}{b+m}\right)\in\left(C_m\right)\Rightarrow\overrightarrow{AB}=\left(b;\frac{m-2b}{m+b}\right)\)

Ta có : \(I\left(-m;-1\right)\Rightarrow\overrightarrow{AI}=\left(-m;-2\right)\)

Tam giác ABI vuông cân tại A \(\Leftrightarrow\begin{cases}\overrightarrow{AB.}\overrightarrow{AI}=0\\AB^2=AI^2\end{cases}\)

\(\begin{cases}mb+2\frac{m-2b}{m+b}=0\\m^2+4=b^2+\left(\frac{m-2b}{m+b}\right)^2\end{cases}\)\(\Leftrightarrow\begin{cases}\frac{m-2b}{m+b}=-\frac{bm}{2}\left(1\right)\\m^2+4=b^2+\frac{m^2b^2}{4}\left(2\right)\end{cases}\)

\(\left(2\right)\Leftrightarrow m^2\left(b^2-4\right)+4\left(b^2-4\right)=0\Leftrightarrow\left(b^2-4\right)\left(m^2+4\right)=0\)

     \(\Leftrightarrow b^2=4\Leftrightarrow b=\pm2\)

* b = 2 thay vào (1) ta được \(\frac{m-4}{m+2}=-m\Leftrightarrow m^2+3m-4=0\Leftrightarrow m=1;m=-4\)

 b = - 2 thay vào (1) ta được \(\frac{m+4}{m-2}=m\Leftrightarrow m^2-3m-4=0\Leftrightarrow m=-1;m=4\)

Vậy \(m=\pm1;m=\pm4\) là những giá trị cần tìm

 

 
Vo Thi Minh Dao
Xem chi tiết
Nguyễn Việt Lâm
19 tháng 12 2020 lúc 19:02

\(m\ne\pm1\)

ĐKXĐ: \(x\in\left[-2018;2018\right];x\ne0\)

Miền xác định của hàm là miền đối xứng

Để ĐTHS nhận Oty làm trục đối xứng \(\Leftrightarrow\) hàm chẵn

\(\Leftrightarrow\) Với mọi m ta phải có: \(f\left(-x\right)=f\left(x\right)\) 

\(\Leftrightarrow\dfrac{m\sqrt{2018+x}+\left(m^2-2\right)\sqrt{2018-x}}{\left(m^2-1\right)x}=\dfrac{m\sqrt{2018-x}+\left(m^2-2\right)\sqrt{2018+x}}{-\left(m^2-1\right)x}\)

\(\Leftrightarrow\left(m^2+m-2\right)\sqrt{2018+x}=\left(-m^2-m+2\right)\sqrt{2018-x}\)

\(\Leftrightarrow\left\{{}\begin{matrix}m^2+m-2=0\\-m^2-m+2=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}m=1\left(loại\right)\\m=-2\end{matrix}\right.\)

Huyền Tư
Xem chi tiết
Nguyễn Việt Lâm
16 tháng 7 2020 lúc 16:08

Đặt \(x-\frac{a+b}{2}=X\)

\(\Rightarrow y=\left(X-\frac{a-b}{2}\right)^{1994}+\left(X+\frac{a-b}{2}\right)^{1994}\)

\(y\left(-X\right)=\left(-X-\frac{a-b}{2}\right)^{1994}+\left(-X+\frac{a-b}{2}\right)^{1994}\)

\(=\left(X+\frac{a-b}{2}\right)^{1994}+\left(X-\frac{a-b}{2}\right)^{1994}=y\left(X\right)\)

\(\Rightarrow y\left(X\right)\) là hàm chẵn \(\Rightarrow\) đồ thị hàm số đối xứng qua trục \(X=0\) hay đồ thị hàm \(y\left(x\right)\) đối xứng qua trục \(x-\frac{a+b}{2}=0\Leftrightarrow x=\frac{a+b}{2}\)

Scarlett
Xem chi tiết
2611
29 tháng 5 2022 lúc 21:04

Vì `A in (P)` có hoành độ bằng `2`

`=>` Thay `x=2` vào `(P)` có: `y=2^2=4`

    `->A(2;4)`

Vì `A(2;4)` đi qua `(d)` nên ta có:

       `4=-2.2-m+3`

`<=>m=-5`

Hòa cute
29 tháng 5 2022 lúc 21:08
Sách Giáo Khoa
Xem chi tiết
ngonhuminh
10 tháng 4 2017 lúc 20:16

a)

y(1) =a-4+c=\(-2\)\(\Rightarrow\) a+c=2

y(2)=4a-8+c=3 \(\Rightarrow\)4a+c=3

Trừ cho nhau\(\Rightarrow\)3a=1 \(\Rightarrow\)a=\(\dfrac{1}{3}\)\(\Rightarrow\)  \(c=2-\dfrac{1}{3}=\dfrac{5}{3}\).

Vậy: \(y=\dfrac{1}{3}x^2-4x+\dfrac{5}{3}\).

b)

I(-2;1)\(\Rightarrow\dfrac{4}{2a}=-2\)\(\Leftrightarrow a=-1\).

y(-2) \(=-4+8+c=1\)\(\Rightarrow\) \(c=-3\)

Vậy: \(y=-x^2-4x-3\).

c)\(\dfrac{4}{2a}=-3\)\(\Leftrightarrow a=-\dfrac{2}{3}\)
\(y\left(-2\right)=-\dfrac{2}{3}.4+8+c=1\)\(\Leftrightarrow c=-\dfrac{13}{3}\)
Vậy: \(y=-\dfrac{2}{3}x^3-4x-\dfrac{13}{3}\).

Trang Nguyễn
Xem chi tiết
missing you =
23 tháng 8 2021 lúc 6:27

a, gọi điểm hàm số (1) luôn đi qua là A(xo,yo) thì xo,yo thỏa mãn (1)

\(=>yo=\left(a-1\right)xo+a< ->a.\left(xo+1\right)-\left(xo+yo\right)=0\)

\(=>\left\{{}\begin{matrix}xo+1=0\\xo+yo=0\end{matrix}\right.\)=>xo=-1,yo=1 vậy.....

b,\(=>x=0,y=3=>\left(1\right):a=3\)(tm)

c,\(=>x=-2,y=0=>\left(1\right):0=\left(a-1\right)\left(-2\right)+a=>a=2\left(tm\right)\)

\(=>y=x+2\) cho x=0=>y=2=>A(0;2)

cho y=0=>x=-2=>B(-2;0)

gọi OH là khoảng cách từ gốc tọa độ đến đồ thị hàm số(1)

\(=>\dfrac{1}{OH^2}=\dfrac{1}{OA^2}+\dfrac{1}{OB^2}=>\dfrac{1}{OH^2}=\dfrac{1}{2^2}+\dfrac{1}{\left(-2\right)^2}=>OH=....\)

 

Trang Nguyễn
23 tháng 8 2021 lúc 10:07

 m

Tiểu thư họ Vũ
Xem chi tiết