Biết sin a + cos a = m .Tính P = \(cos\left(a-\frac{\pi}{4}\right)\)
Cho \(\cos 2x = \frac{1}{4}\).
Tính: \(A = \cos \left( {x + \frac{\pi }{6}} \right)\cos \left( {x - \frac{\pi }{6}} \right)\); \(B = \sin \left( {x + \frac{\pi }{3}} \right)\sin \left( {x - \frac{\pi }{3}} \right)\)
\(\begin{array}{l}A = \cos \left( {x + \frac{\pi }{6}} \right)\cos \left( {x - \frac{\pi }{6}} \right) = \frac{1}{2}\left[ {\cos \left( {x + \frac{\pi }{6} + x - \frac{\pi }{6}} \right) + \cos \left( {x + \frac{\pi }{6} - x + \frac{\pi }{6}} \right)} \right]\\A = \frac{1}{2}\left[ {\cos 2x + \cos \frac{\pi }{3}} \right] = \frac{1}{2}\left( {\frac{1}{4} + \frac{1}{2}} \right) = \frac{3}{8}\end{array}\)
\(\begin{array}{l}B = \sin \left( {x + \frac{\pi }{3}} \right)\sin \left( {x - \frac{\pi }{3}} \right) = - \frac{1}{2}\left[ {\cos \left( {x + \frac{\pi }{3} + x - \frac{\pi }{3}} \right) - \cos \left( {x + \frac{\pi }{3} - x + \frac{\pi }{3}} \right)} \right]\\B = - \frac{1}{2}\left( {\cos 2x - \cos \frac{{2\pi }}{3}} \right) = - \frac{1}{2}\left( {\frac{1}{4} + \frac{1}{2}} \right) = - \frac{3}{8}\end{array}\)
Tính
\(A = \sin \left( {a - 17^\circ } \right)\cos \left( {a + 13^\circ } \right) - \sin \left( {a + 13^\circ } \right)\cos \left( {a - 17^\circ } \right)\)
\(B = \cos \left( {b + \frac{\pi }{3}} \right)\cos \left( {\frac{\pi }{6} - b} \right) - \sin \left( {b + \frac{\pi }{3}} \right)\sin \left( {\frac{\pi }{6} - b} \right)\)
\(\begin{array}{l}A = \sin \left( {a - 17^\circ } \right)\cos \left( {a + 13^\circ } \right) - \sin \left( {a + 13^\circ } \right)\cos \left( {a - 17^\circ } \right)\\A = \sin \left( {a - 17^\circ - a - 13^\circ } \right) = \sin \left( { - 30^\circ } \right) = - \frac{1}{2}\end{array}\)
\(\begin{array}{l}B = \cos \left( {b + \frac{\pi }{3}} \right)\cos \left( {\frac{\pi }{6} - b} \right) - \sin \left( {b + \frac{\pi }{3}} \right)\sin \left( {\frac{\pi }{6} - b} \right)\\B = \cos \left( {b + \frac{\pi }{3} + \frac{\pi }{6} - b} \right) = \cos \frac{\pi }{2} = 0\end{array}\)
Cho \(\cos a = \frac{3}{5}\) với \(0 < a < \frac{\pi }{2}\). Tính: \(\sin \left( {a + \frac{\pi }{6}} \right),\,\cos \left( {a - \frac{\pi }{3}} \right),\,\tan \left( {a + \frac{\pi }{4}} \right)\)
Ta có:
\({\cos ^2}a + {\sin ^2}a = 1 \Rightarrow \sin a = \pm \frac{4}{5}\)
Do \(0 < a < \frac{\pi }{2} \Leftrightarrow \sin a = \frac{4}{5}\)
\(\tan a = \frac{{\sin a}}{{\cos a}} = \frac{4}{3}\)
Ta có;
\(\begin{array}{l}\sin \left( {a + \frac{\pi }{6}} \right) = \sin a.\cos \frac{\pi }{6} + \cos a.\sin \frac{\pi }{6} = \frac{4}{5}.\frac{{\sqrt 3 }}{2} + \frac{3}{5}.\frac{1}{2} = \frac{{3 + 4\sqrt 3 }}{{10}}\\\cos \left( {a - \frac{\pi }{3}} \right) = \cos a.\cos \frac{\pi }{3} + \sin a.\sin \frac{\pi }{3} = \frac{3}{5}.\frac{1}{2} + \frac{4}{5}.\frac{{\sqrt 3 }}{2} = \frac{{3 + 4\sqrt 3 }}{{10}}\\\tan \left( {a + \frac{\pi }{4}} \right) = \frac{{\tan a + \tan \frac{\pi }{4}}}{{1 - \tan a.tan\frac{\pi }{4}}} = \frac{{\frac{4}{3} + 1}}{{1 - \frac{4}{3}}} = - 7\end{array}\)
Tính:
a) \(\cos \left( {a + \frac{\pi }{6}} \right)\), biết \(\sin a = \frac{1}{{\sqrt 3 }}\) và \(\frac{\pi }{2} < a < \pi \);
b) \(\tan \left( {a - \frac{\pi }{4}} \right)\), biết \(\cos a = - \frac{1}{3}\) và \(\pi < a < \frac{{3\pi }}{2}\).
a) Vì \(\frac{\pi }{2} < a < \pi \) nên \(\cos a < 0\). Do đó \(\cos a = \sqrt {1 - {{\sin }^2}a} = \sqrt {1 - \frac{1}{3}} = - \frac{{\sqrt 6 }}{3}\)
Ta có: \(\cos \left( {a + \frac{\pi }{6}} \right) = \cos a\cos \frac{\pi }{6} - \sin a\sin \frac{\pi }{6} = - \frac{{\sqrt 6 }}{3}.\frac{{\sqrt 3 }}{2} - \frac{1}{{\sqrt 3 }}.\frac{1}{2} = - \frac{{\sqrt 3 + 3\sqrt 2 }}{6}\)
b) Vì \(\pi < a < \frac{{3\pi }}{2}\) nên \(\sin a < 0\). Do đó \(\sin a = \sqrt {1 - {{\cos }^2}a} = \sqrt {1 - \frac{1}{9}} = - \frac{{2\sqrt 2 }}{3}\)
Suy ra \(\tan a\; = \frac{{\sin a}}{{\cos a}} = \frac{{ - \frac{{2\sqrt 2 }}{3}}}{{ - \frac{1}{3}}} = 2\sqrt 2 \)
Ta có: \(\tan \left( {a - \frac{\pi }{4}} \right) = \frac{{\tan a - \tan \frac{\pi }{4}}}{{1 + \tan a\tan \frac{\pi }{4}}} = \frac{{\frac{{\sin a}}{{\cos a}} - 1}}{{1 + \frac{{\sin a}}{{\cos a}}}} = \frac{{2\sqrt 2 - 1}}{{1 + 2\sqrt 2 }} = \frac{{9 - 4\sqrt 2 }}{7}\)
Cho \(\sin\alpha+\cos\alpha=\frac{\sqrt{6}}{2},a\in\left(0;\frac{\pi}{4}\right)\)
Tính giá trị biểu thức: \(P=\cos\left(\alpha+\frac{\pi}{4}\right)+\sqrt{2\left(1-\sin\alpha\cos\alpha+\sin\alpha-\cos\alpha\right)}\)
chứng minh
a , \(sinasin\left(\frac{\pi}{3}-a\right)sin\left(\frac{\pi}{3}+a\right)=\frac{1}{4}sin3a\) Áp dụng tính \(sin\frac{\pi}{9}sin\frac{2\pi}{9}sin\frac{4\pi}{9}\)
b , \(cosacos\left(\frac{\pi}{3}-a\right)cos\left(\frac{\pi}{3}+a\right)=\frac{1}{4}cos3a\) Áp dụng tính \(cos\frac{\pi}{18}cos\frac{5\pi}{18}cos\frac{7\pi}{18}\)
\(sina.sin\left(\frac{\pi}{3}-a\right)sin\left(\frac{\pi}{3}+a\right)\)
\(=-\frac{1}{2}sina\left[cos\frac{2\pi}{3}-cos2a\right]=-\frac{1}{2}sina\left(-\frac{1}{2}-cos2a\right)\)
\(=\frac{1}{4}sina+\frac{1}{2}sina.cos2a=\frac{1}{4}sina+\frac{1}{4}sin3a-\frac{1}{4}sina\)
\(=\frac{1}{4}sin3a\)
\(sin\frac{\pi}{9}sin\frac{2\pi}{9}sin\frac{4\pi}{9}=sin\frac{\pi}{9}sin\left(\frac{\pi}{3}-\frac{\pi}{9}\right)sin\left(\frac{\pi}{3}+\frac{\pi}{9}\right)=\frac{1}{4}sin\frac{\pi}{3}=\frac{\sqrt{3}}{8}\)
\(cosa.cos\left(\frac{\pi}{3}-a\right)cos\left(\frac{\pi}{3}+a\right)=\frac{1}{2}cosa\left(cos\frac{2\pi}{3}+cos2a\right)\)
\(=\frac{1}{2}cosa\left(cos2a-\frac{1}{2}\right)=\frac{1}{2}cosa.cos2a-\frac{1}{4}cosa\)
\(=\frac{1}{4}cos3a+\frac{1}{4}cosa-\frac{1}{4}cosa=\frac{1}{4}cos3a\)
\(cos\frac{\pi}{18}cos\frac{5\pi}{18}cos\frac{7\pi}{18}=cos\frac{\pi}{18}.cos\left(\frac{\pi}{3}-\frac{\pi}{18}\right).cos\left(\frac{\pi}{3}+\frac{\pi}{18}\right)=\frac{1}{4}cos\frac{\pi}{6}=\frac{\sqrt{3}}{8}\)
rút gọn biểu thức:
A= cosa.sin( b-c )+ cosb. sin(c-a) + cosc.sin( a-b)
B= \(sin^2x+cos\left(\frac{\pi}{3}-x\right).cos\left(\frac{\pi}{3}+x\right)\)
C=\(sin^2x+sin^2\left(\frac{2\pi}{3}+x\right)+sin^2\left(\frac{2\pi}{3}-x\right)\)
D=\(sin^2\left(\frac{\pi}{4}+x\right)-sin^2x-2sinx.sin\frac{\pi}{4}.cos\left(\frac{\pi}{4}+x\right)\)
\(A=cosa\left(sinb.cosc-cosb.sinc\right)+cosb\left(sinc.cosa-cosc.sina\right)+cosc\left(sinacosb-cosasinb\right)\)
\(A=cosasinbcosc-cosacosbsinc+cosacosbsinc-sinacosbcosc+sinacosbcosc-cosasinbcosc\)
\(A=0\)
\(B=sin^2x+\frac{1}{2}\left(cos\frac{2\pi}{3}+cos2x\right)\)
\(B=\frac{1}{2}-\frac{1}{2}cos2x-\frac{1}{4}+\frac{1}{2}cos2x\)
\(B=\frac{1}{4}\)
\(C=\frac{1}{2}-\frac{1}{2}cos2x+\frac{1}{2}-\frac{1}{2}cos\left(\frac{4\pi}{3}+2x\right)+\frac{1}{2}-\frac{1}{2}cos\left(\frac{4\pi}{3}-2x\right)\)
\(C=\frac{3}{2}-\frac{1}{2}cos2x-\frac{1}{2}\left(cos\left(\frac{4\pi}{3}+2x\right)+cos\left(\frac{4\pi}{3}-2x\right)\right)\)
\(C=\frac{3}{2}-\frac{1}{2}cos2x-cos\frac{4\pi}{3}.cos2x\)
\(C=\frac{3}{2}-\frac{1}{2}cos2x+\frac{1}{2}cos2x\)
\(C=\frac{3}{2}\)
\(D=\frac{1}{2}\left[\sqrt{2}sin\left(\frac{\pi}{4}+x\right)\right]^2-sin^2x-sinx.\sqrt{2}cos\left(\frac{\pi}{4}+x\right)\)
\(D=\frac{1}{2}\left(sinx+cosx\right)^2-sin^2x-sinx\left(sinx-cosx\right)\)
\(D=\frac{1}{2}\left(1+2sinx.cosx\right)-sin^2x-sin^2x+sinx.cosx\)
\(D=\frac{1}{2}+sinxcosx+sinxcosx=\frac{1}{2}+sin2x\)
Góc độ cao của thang dựa vào tường là 60º và chân thang cách tường 4,6 m. Chiều dài của thang là
Rút gọn biểu thức
A=\(\frac{2Sina-Sin4a}{2Sina+Sin4a}\)
B=\(\frac{Sin\left(\frac{\pi}{4}-a\right)+Cos\left(\frac{\pi}{4}-a\right)}{Sin\left(\frac{\pi}{4}-a\right)-Cos\left(\frac{\pi}{4}-a\right)}\)
a) Cho \(a = \frac{\pi }{3}\) và \(b = \frac{\pi }{6}\), hãy chứng tỏ \(\cos \left( {a - b} \right) = \cos a\cos b + \sin a\sin b\).
b) Bằng cách viết \(a + b = a - \left( { - b} \right)\) và từ công thức ở HĐ1a, hãy tính \(\cos \left( {a + b} \right).\)
c) Bằng cách viết \(\sin \left( {a - b} \right) = \cos \left[ {\frac{\pi }{2} - \left( {a - b} \right)} \right] = \cos \left[ {\left( {\frac{\pi }{2} - a} \right) + b} \right]\;\)và sử dụng công thức vừa thiết lập ở HĐ1b, hãy tính \(\sin \left( {a - b} \right)\).
a) Ta có: VT = \(\cos \left( {\frac{\pi }{3} - \frac{\pi }{6}} \right) = \cos \frac{\pi }{{6}} = \frac{{\sqrt 3 }}{2}\)
\(VP = \cos \frac{\pi }{3}\cos \frac{\pi }{6} + \sin \frac{\pi }{3}\sin \frac{\pi }{6} = \frac{{1 }}{2}.\frac{{\sqrt 3 }}{2} + \frac{{\sqrt 3 }}{2}.\frac{1}{2} = \frac{{\sqrt 3 }}{2} = VT\)
Vậy \(\cos \left( {a - b} \right) = \cos a\cos b + \sin a\sin b\)
b) Ta có: \(\cos \left( {a + b} \right) = \cos (a--b) = \cos a\cos \left( { - b} \right) + \sin a\sin \left( { - b} \right) = \cos a\cos b - \sin a\sin b\)
c) Ta có: \(\sin \left( {a - b} \right) = \cos \left[ {\frac{\pi }{2} - \left( {a - b} \right)} \right] = \cos \left[ {\left( {\frac{\pi }{2} - a} \right) + b} \right] = \cos \left( {\frac{\pi }{2} - a} \right)\cos b + \sin \left( {\frac{\pi }{2} - a} \right)\sin b\)
\( = \left( {\cos \frac{\pi }{2}\cos a + \sin \frac{\pi }{2}\sin a} \right)\cos b + \sin \left( {\frac{\pi }{2} - a} \right)\sin b = \sin a\cos b + \cos a\sin b\)