Tìm các số nguyên dương x và y sao cho \(x^2+5x+12=\left(x+2\right)y^2+\left(x^2+6x+8\right)y\)
Tìm x,y nguyên dương sao cho: \(2xy-1⋮\left(x-1\right)\left(y-1\right)\)
Tìm x,y nguyên dương sao cho: \(4x^2+6x+3⋮2xy-1\)
tìm số nguyên dương x,y thỏa mãn \(\left(x^2+y^2\right)\left(x+y-8\right)=8\left(xy+1\right)\)
tìm số nguyên dương x,y sao cho :\(x^3+y^3+4\left(x^2+y^2\right)+4\left(x+y\right)=16xy\)
\(pt=\left(x^3-4x^2+4x\right)+\left(y^3-4y^2+4y\right)+\left(8x^2+8y^2-16xy\right)=0\)
\(\Leftrightarrow x\left(x-2\right)^2+y\left(y-2\right)^2+8\left(x-y\right)^2=0\left(1\right)\)
Do \(x\left(x-2\right)^2\ge0,y\left(y-2\right)^2\ge0,8\left(x-y\right)^2\ge0\left(2\right)\)
Từ (1) và (2) =>x=y=2
cho x,y là các số nguyên dương thỏa mãn x+y=2017. Tìm Min và Max
\(P=x\left(x^2+y\right)+y\left(y^2+x\right)\)
Lời giải:
Không mất tính tổng quát. Giả sử \(x\geq y\Rightarrow 2x\geq 2017\Rightarrow x\geq 1009\) (do \(x\) nguyên dương)
Thực hiện biến đổi P
\(P=x(x^2+y)+y(y^2+x)=(x^3+y^3)+2xy\)
\(\Leftrightarrow P=(x+y)(x^2-xy+y^2)+2xy\)
\(\Leftrightarrow P=2017(x^2-xy+y^2)+2xy=2017(x+y)^2-6049xy\)
\(\Leftrightarrow P=2017^3-6049xy=2017^3-6049x(2017-x)\)
\(\Leftrightarrow P=6049x^2-6049.2017xy+2017^3\)
Tìm max:
Tiếp tục biến đổi :\(P=6049(x-1)(x-2016)+2017^3-2016.6049\)
Vì \(x\) nguyên dương \(\Rightarrow x\geq 1\)
\(y\geq 1\Rightarrow x=2017-y\leq 2016\)
Do đó \((x-1)(x-2016)\leq 0\Rightarrow P\leq 2017^3-2016.6049\)
Vậy \((Max) P=2017^3-2016.6049\Leftrightarrow (x,y)=(2016,1)\) và hoán vị
Tìm min:
Biến đổi \(P=6049(x-1008)(x-1009)+2017^3-1008.1009.6049\)
Vì \(x\geq 1009\Rightarrow (x-1008)(x-1009)\geq 0\), do đó \(P\geq 2017^3-1008.1009.6049\)
Vậy \((Min)P=2017^3-6049.1008.1009\Leftrightarrow (x,y)=(1009,1008)\) và hoán vị.
a) Tìm cặp số x,y nguyên dương thỏa mãn \(x^2+y^2\left(x-y+1\right)-\left(x-1\right)y=22\)
b) Tìm các cặp số x,y,z nguyên dương thỏa mãn \(\dfrac{xy+yz+zx}{x+y+z}=4\)
Câu 1: Cho số nguyên tố p>3 và 2 số nguyên dương a,b sao cho: \(p^2+a^2=b^2\)
Chứng minh a chia hết cho 12
Câu 2: Tìm hai số nguyên dương x;y thỏa mãn: \(\left(x+y\right)^4=40x+1\)
Câu 3: Giải phương trình: \(\left(3x-2\right)\left(x+1\right)^2\left(3x+8\right)=-16\)
Cho x,y,z là các số thực dương thỏa mãn điều kiện xy+yz+xz=12. Chứng minh rằng:
\(\sqrt[x]{\dfrac{\left(12+y^2\right)\left(12+z^2\right)}{12+x^2}}\)+ \(\sqrt[y]{\dfrac{\left(12+x^2\right)\left(12+z^2\right)}{12+y^2}}\)+ \(\sqrt[z]{\dfrac{\left(12+x^2\right)\left(12+y^2\right)}{12+z^2}}\)
cho x,y,z là các số thực dương thỏa mãn x+y+z=xyz.CMR
\(\dfrac{x}{1+x^2}+\dfrac{2y}{1+y^2}+\dfrac{3z}{1+z^2}=\dfrac{xyz\left(5x+4y+3z\right)}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\)
Tìm tất cả các cặp số dương x ,y sao cho \(x^2+y^2=2\left(x+y\right)\left(\sqrt{x}+\sqrt{y}-2\right)\)