\(\sqrt[3]{x+2}-\sqrt{x+1}=1\)
giải phương trình trên.
giúp mình vs ạ
phương trình \(x^2-3x+1=\frac{-\sqrt{3}}{3}\sqrt{x^4+x^2+1}\) hộ mình vs ạ
giải hộ mình vs
Đúng làm trẻ trâu , ăn nói mất lịch sự
giúp mình bài này vs . 1, giải phương trình \(5x+2\sqrt{x+1}+\sqrt{1-x}+\sqrt{1-x}=-3\)
Giúp mình với ạ . Cảm ơn nhiều .
1)Giải hệ phương trình : \(\left\{{}\begin{matrix}\sqrt{2x-3}-\sqrt{y}\text{=}2x-6\\x^3+y^3+7xy\left(x+y\right)\text{=}8xy.\sqrt{2\left(x^2+y^2\right)}\end{matrix}\right.\)
2) Giải phương trình : \(\dfrac{2\sqrt{x}}{x-1}.x+6+\sqrt{x+2}\text{=}\sqrt{2-x}+3\sqrt{4-x^2}\)
1) đkxđ \(\left\{{}\begin{matrix}x\ge\dfrac{3}{2}\\y\ge0\end{matrix}\right.\)
Xét biểu thức \(P=x^3+y^3+7xy\left(x+y\right)\)
\(P=\left(x+y\right)^3+4xy\left(x+y\right)\)
\(P\ge4\sqrt{xy}\left(x+y\right)^2\)
Ta sẽ chứng minh \(4\sqrt{xy}\left(x+y\right)^2\ge8xy\sqrt{2\left(x^2+y^2\right)}\) (*)
Thật vậy, (*)
\(\Leftrightarrow\left(x+y\right)^2\ge2\sqrt{2xy\left(x^2+y^2\right)}\)
\(\Leftrightarrow\left(x+y\right)^4\ge8xy\left(x^2+y^2\right)\)
\(\Leftrightarrow x^4+y^4+6x^2y^2\ge4xy\left(x^2+y^2\right)\) (**)
Áp dụng BĐT Cô-si, ta được:
VT(**) \(=\left(x^2+y^2\right)^2+4x^2y^2\ge4xy\left(x^2+y^2\right)\)\(=\) VP(**)
Vậy (**) đúng \(\Rightarrowđpcm\). Do đó, để đẳng thức xảy ra thì \(x=y\).
Thế vào pt đầu tiên, ta được \(\sqrt{2x-3}-\sqrt{x}=2x-6\)
\(\Leftrightarrow\dfrac{x-3}{\sqrt{2x-3}+\sqrt{x}}=2\left(x-3\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\left(nhận\right)\\\dfrac{1}{\sqrt{2x-3}+\sqrt{x}}=2\end{matrix}\right.\)
Rõ ràng với \(x\ge\dfrac{3}{2}\) thì \(\dfrac{1}{\sqrt{2x-3}+\sqrt{x}}\le\dfrac{1}{\sqrt{\dfrac{2.3}{2}-3}+\sqrt{\dfrac{3}{2}}}< 2\) nên ta chỉ xét TH \(x=3\Rightarrow y=3\) (nhận)
Vậy hệ pt đã cho có nghiệm duy nhất \(\left(x;y\right)=\left(3;3\right)\)
Giải các phương trình sau:
a/\(\dfrac{\sqrt{21+x}+\sqrt{21-x}}{\sqrt{21+x}-\sqrt{21-x}}\) =\(\dfrac{21}{x}\)
b/ \(\sqrt[3]{x+1}+\sqrt[3]{3x+1}=\sqrt[3]{x-1}\)
Giúp mình với ạ, qua tết mình phải nộp rồi.
Giải các phương trình sau :
\(\sqrt{x-1}+\sqrt{2x+1}=1\)
Giúp mình với ạ . Mình cảm ơn <3
ĐKXĐ: \(x\ge1\)
\(\Rightarrow\left(\sqrt{x-1}+\sqrt{2x+1}\right)^2=1\Leftrightarrow x-1+2x+1+2\sqrt{\left(x-1\right)\left(2x+1\right)}=1\Leftrightarrow3x+2\sqrt{2x^2-x-1}=1\) \(\Leftrightarrow2\sqrt{2x^2-x-1}=1-3x\Rightarrow\left(2\sqrt{2x^2-x-1}\right)^2=\left(1-3x\right)^2\Leftrightarrow8x^2-4x-4=9x^2-6x+1\) \(\Leftrightarrow x^2-2x+5=0\Leftrightarrow\left(x-1\right)^2+4=0\Leftrightarrow\left(x-1\right)^2=-4\) vô lí vì VT\(\ge0\) mà VP<0 \(\Rightarrow\) ko có x Vậy...
Giải phương trình:
\(x^4+\left(x^2+1\right)\sqrt{x^2+1}-1=0\)
Giúp em vs ạ
\(ĐKXĐ:x\in R\)
Phương trình cho tương đương :
\(\left(x^2-1\right)\left(x^2+1\right)+\left(x^2+1\right)\sqrt{x^2+1}=0\)
Đặt \(\sqrt{x^2+1}=a\left(a\ge1\right)\Rightarrow a^2-2=x^2-1\)
Khi đó pt trở thành :
\(a^2\left(a^2-2\right)+a^3=0\)
\(\Leftrightarrow a^2\left(a^2-2+a\right)=0\)
\(\Leftrightarrow a^2\left(a+2\right)\left(a-1\right)=0\)
\(\Leftrightarrow a=1\) ( do \(a\ge1\) )
\(\Rightarrow\sqrt{x^2+1}=1\Rightarrow x^2+1=1\Rightarrow x=0\) ( Thỏa mãn )
Vậy \(S=\left\{0\right\}\)
Lmf giúp mình đi ạ
Giải phương trình
\(A=2\left(x+2\right)\sqrt{3x-1}=3x^2-7x-3\)
Rút gọn
\(B=\sqrt{x+2\sqrt{x-1}}+\sqrt{x-2\sqrt{x-1}}\)
a> Giải phương trình với B=2
1, Chứng minh bất đẳng thức:
\(a+\sqrt{a^2-2a+5}+\sqrt{a-1}\ge3\forall a\ge1\)
2, Giải phương trình:
\(x\left(x^2-3x+3\right)+\sqrt{x+3}=3\)
Mong mọi người giúp mình với ạ!! Mình cảm ơn nhiều!!
Bài 1:
Vì $a\geq 1$ nên:
\(a+\sqrt{a^2-2a+5}+\sqrt{a-1}=a+\sqrt{(a-1)^2+4}+\sqrt{a-1}\)
\(\geq 1+\sqrt{4}+0=3\)
Ta có đpcm
Dấu "=" xảy ra khi $a=1$
Bài 2:
ĐKXĐ: x\geq -3$
Xét hàm:
\(f(x)=x(x^2-3x+3)+\sqrt{x+3}-3\)
\(f'(x)=3x^2-6x+3+\frac{1}{2\sqrt{x+3}}=3(x-1)^2+\frac{1}{2\sqrt{x+3}}>0, \forall x\geq -3\)
Do đó $f(x)$ đồng biến trên TXĐ
\(\Rightarrow f(x)=0\) có nghiệm duy nhất
Dễ thấy pt có nghiệm $x=1$ nên đây chính là nghiệm duy nhất.
GIẢI PHƯƠNG TRÌNH :
\(\sqrt[3]{2x-1}+\sqrt[3]{x-1}=\sqrt[3]{3x-2}\)
GIÚP MÌNH VS !!!!!
dkxd \(2x-1\ge0\Leftrightarrow x\ge\frac{1}{2}\)
\(x-1\ge0\Leftrightarrow x\ge1\)
lập phương 2 vế
\(2x-1+x-1+3\left(\sqrt[3]{\left(2x-1\right)^2\left(x-1\right)}+\sqrt[3]{\left(X-1\right)^2\left(2x-1\right)}\right)=3x-2.\)
đặt căn bậc 3(2x-1)=m , căn bậc 3(X-1)=t " và rút gọn ta được
\(3t^2m+3m^2t=0\)
\(3tm\left(t+m\right)=0\)
\(\hept{\begin{cases}tm=0\\t+m=0\end{cases}\Leftrightarrow\hept{\begin{cases}\sqrt[3]{\left(2x-1\right)\left(x-1\right)}=0\\\sqrt[3]{\left(2x-1\right)}+\sqrt[3]{\left(X-1\right)}=0\end{cases}}}\)
lập phương 2 vế ta được
\(\left(2x-1\right)\left(x-1\right)=0\)
\(\hept{\begin{cases}x=\frac{1}{2}\\x=1\end{cases}}\)
\(\sqrt[3]{\left(2x-1\right)}+\sqrt[3]{x-1}=0\Leftrightarrow\sqrt[3]{\left(2x-1\right)}=-\sqrt[3]{\left(x-1\right)}\)
lập phương 2 vế ta được
\(2x-1=-x+1\Leftrightarrow x=0\)
x=0 loại vì ko thỏa mãn điều kiện xác định
suy ra pt có 2 nghiệm \(x_1=\frac{1}{2}...x_2=1\)
sửa lại dòng \(2x-1=-x+1\Leftrightarrow x=-2\) loại vì ko thỏa mãn dkxd
lại sai rồi sủa lại tiếp bài này là căn bậc 3 , ko cần dkxd
vì thế nghiệm của pt là x1=1 , x2=1/2 , x3=-2
Giải phương trình:
\(\sqrt{x^2-3}-\sqrt{x^2+1}=3\)
GIÚP MÌNH VS NHA!!!
\(\sqrt{x^2-3}-\sqrt{x^2+1}=3\)
\(\Rightarrow\sqrt{x^2-3}=3+\sqrt{x^2+1}\)
\(\Rightarrow x^2-3=9+6\sqrt{x^2+1}+x^2+1\)
\(\Rightarrow6\sqrt{x^2+1}=-13\left(vn\right)\)
Vậy pt vô nghiệm