Cho 2 đường tròn C: x^2 + y^2 - 2x -2y +1=0 ; C’ : x^2 + y^2 +4x -5=0 cùng đi qua điểm M (1,0) . Viết PT đường thẳng đi qua M cắt 2 đường tròn trên lần lượt A và B sao cho MA=2MB
Các bạn giải hộ mình đang cần gấp, cảm ơn.
Câu 26. Cho hai đường tròn (C):(x-2)^ 2 +(y-2)^ 2 =9;(C' ):x^ 2 +y^ 2 +4x-8y+11=0 ,biết (C) và (C') đối xứng nhau qua đường thẳng (a) .Phương trình của (a) là : A. 2x + 2y - 4 = 0 B.2x-y+3=0 . C. x + y - 4 = 0 . D. 2x + 2y = 0 .
câu 1.cho đường tròn (c) : \(x^2+y^2+4x+4y-17=0\). viết phương trình tiếp tuyến của (C) biết tiếp tuyến tạo với Õ một góc \(60^0\)
câu 2. cho hai đường trong (c1)\(x^2+y^2-2x-2y=0\), (c2) \(x^2+y^2-4x-6y-3=0\) viết phương trình tiếp tuyến chung của 2 đường tròn
1.
Tạo với Ox là tạo với tia Ox hay trục hoành nhỉ? 2 cái này khác nhau đấy. Tạo với tia Ox thì chỉ có 1 góc 60 độ theo chiều dương, tạo với trục hoành thì có 2 góc 60 và 120 đều thỏa mãn. Coi như tạo tia Ox đi
Đường tròn tâm \(I\left(-2;-2\right)\) bán kính \(R=5\)
\(tan60^0=\sqrt{3}\Rightarrow\) tiếp tuyến có hệ số góc bằng \(\sqrt{3}\Rightarrow\) pt có dạng:
\(y=\sqrt{3}x+b\Leftrightarrow\sqrt{3}x-y+b=0\)
\(d\left(I;d\right)=R\Leftrightarrow\dfrac{\left|-2\sqrt{3}+2+b\right|}{\sqrt{3+1}}=5\)
\(\Leftrightarrow\left|b+2-2\sqrt{3}\right|=10\Rightarrow\left[{}\begin{matrix}b=8+2\sqrt{3}\\b=-12+2\sqrt{3}\end{matrix}\right.\)
Có 2 tiếp tuyến: \(\left[{}\begin{matrix}\sqrt{3}x-y+8+2\sqrt{3}=0\\\sqrt{3}x-y-12+2\sqrt{3}=0\end{matrix}\right.\)
2.
(C1) có tâm \(I\left(1;1\right)\) bán kính \(R_1=\sqrt{2}\)
(C2) có tâm \(J\left(2;3\right)\) bán kính \(R_2=4\)
Gọi tiếp tuyến chung d có pt: \(ax+by+c=0\)
\(\left\{{}\begin{matrix}d\left(I;d\right)=R_1\\d\left(J;d\right)=R_2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{\left|a+b+c\right|}{\sqrt{a^2+b^2}}=\sqrt{2}\\\dfrac{\left|2a+3b+c\right|}{\sqrt{a^2+b^2}}=4\end{matrix}\right.\)
\(\Rightarrow2\sqrt{2}\left|a+b+c\right|=\left|2a+3b+c\right|\)
? Đề nghiêm túc đấy chứ? Cho kiểu này thì sấp mặt, tối thiểu pt (C1) cũng có dạng \(x^2+y^2-2x-2y+1=0\) để học sinh còn thở chứ.
Ủa, nhìn lại thì bài 2 người ta cho đề kiểu hack não.
\(\overrightarrow{IJ}=\left(1;2\right)\Rightarrow IJ=\sqrt{5}< R_2-R_1=4-\sqrt{2}\)
Do đó \(\left(C_2\right)\) chứa \(\left(C_1\right)\) nên ko tồn tại tiếp tuyến chung của 2 đường tròn
Trong mặt phẳng tọa độ Oxy, cho đường tròn (C) : \(x^2+y^2-2x-2y+1=0\) và đường thẳng \(d=x-y+3=0\). Tìm tọa độ điểm M nằm trên d sao cho đường tròn tâm M có bán kính gấp đôi bán kính đường tròn (C) và tiếp xúc ngoài với đường tròn (C)
Cho đường tròn (C): x 2 + y 2 - 2 x + 2 y - 14 = 0 và đường thẳng ∆: - x + 2y – 2 = 0. Đường thẳng ∆ cắt đường tròn (C) theo dây cung có độ dài là:
A. 11
B. 2 5
C. 2 11
D. 3
tìm tọa độ các giao điểm của 2 đường tròn sau đây :
(C) : x2 + y2 + 2x + 2y - 1 = 0
(C') : x2 + y2 - 2x + 2y - 7 = 0
(C): x2 + y2 + 2x + 2y - 1= 0
=> (x+1)2 +(y+1)2 =3 (1)
(C'): x2 + y2 -2x + 2y -7 =0
=> (x-1)2 +(y+1)2 =9 (2)
(1)(2) => (x-1)2 -(x+1)2 =6
<=> -4x =6 suy ra x= \(\frac{-3}{2}\)
Thay x vào (2) ta có : (y+1)2 = \(\frac{11}{4}\) suy ra y = -1 + \(\frac{\sqrt{11}}{2}\) hoặc y= -1- \(\frac{\sqrt{11}}{2}\)
Phương trình nào trong các phương trình sau đây là phương trình đường tròn? Tìm tọa độ tâm và bán kính của đường tròn đó.
a) \({x^2} + {y^2} - 6x - 8y + 21 = 0\)
b) \({x^2} + {y^2} - 2x + 4y + 2 = 0\)
c) \({x^2} + {y^2} - 3x + 2y + 7 = 0\)
d) \(2{x^2} + 2{y^2} + x + y - 1
a) Phương trình đã cho có dạng \({x^2} + {y^2} - 2ax - 2by + c = 0\) với \(a = 3,b = 4,c = 21\)
Ta có \({a^2} + {b^2} - c = 9 + 16 - 21 = 4 > 0\). Vậy đây là phương trình đường tròn có tâm là \(I(3;4)\) và có bán kính \(R = \sqrt 4 = 2\)
b) Phương trình đã cho có dạng \({x^2} + {y^2} - 2ax - 2by + c = 0\) với \(a = 1,b = - 2,c = 2\)
Ta có \({a^2} + {b^2} - c = 1 + 4 - 2 = 3 > 0\). Vậy đây là phương trình đường tròn có tâm là \(I(1; - 2)\) và có bán kính \(R = \sqrt 3 \)
c) Phương trình đã cho có dạng \({x^2} + {y^2} - 2ax - 2by + c = 0\) với \(a = \frac{3}{2},b = - 1,c = 7\)
Ta có \({a^2} + {b^2} - c = \frac{9}{4} + 1 - 7 = - \frac{{15}}{4} < 0\). Vậy đây không là phương trình đường tròn.
d) Phương trình không có dạng \({x^2} + {y^2} - 2ax - 2by + c = 0\) nên phương trình đã cho không là phương trình đường tròn.
chứng minh rằng : đường thẳng (Δ) : 2x - y = 0 và đường tròn (C) : x2 + y2 - 4x + 2y - 1 = 0 cắt nhau . Tính độ dài dây cung .
Trong mặt phẳng tọa độ Oxy cho điểm A(4; – 1), đường thẳng (d) : 3x – 2y + 1 = 0 và đường tròn (C) :
x^2 + y^2 - 2x + 4y -4 = 0
a. Tìm tọa độ A’ và phương trình (d’) lần lượt là ảnh của A và (d) qua phép tịnh tiến theo vectơ v = (– 2; 3)
b. Tìm phương trình đường tròn (C’) là ảnh của đường tròn (C) qua phép đối xứng trục là đường thẳng (D) : x – y = 0
Phương trình nào sau đây là phương trình đường tròn?
a) \({x^2} + {y^2} - 2x + 2y - 7 = 0\)
b) \({x^2} + {y^2} - 8x + 2y + 20 = 0\)
a) Do \({1^2} + {\left( { - 1} \right)^2} > - 7\) nên \({x^2} + {y^2} - 2x + 2y - 7 = 0\) là phương trình đường tròn
b) Vì \({4^2} + {\left( { - 1} \right)^2} < 20\) nên \({x^2} + {y^2} - 8x + 2y + 20 = 0\)không là phương trình đường tròn
chứng minh rằng : đường thẳng (Δ) : 2x - y = 0 và đường tròn (C) : x2 + y2 - 4x + 2y - 1 = 0 cắt nhau . Tính độ dài dây cung .
(C) có tâm I(2;-1), bán kính R=\(\sqrt{6}\). Khoảng cách từ tâm I tới $\Delta$ là
$d=\dfrac{|2.2-(-1)|}{\sqrt{2^2+1}}=\sqrt{5}<R$ nên $\Delta$ cắt (C).
Gọi $l$ là độ dài dây cung thì
$$\dfrac{l}{2}=\sqrt{R^2-d^2}=1\Rightarrow l=2$$