Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Tuấn Anh
Xem chi tiết
Người Vô Danh
Xem chi tiết
Thảo Ngân
Xem chi tiết
Cô gái thất thường (Ánh...
Xem chi tiết
Nyatmax
22 tháng 12 2019 lúc 14:15

\(DK:x\ge\frac{2020}{2019}\)

PT\(\Leftrightarrow\left(\sqrt{2020x-2019}-\sqrt{2019x-2020}\right)+2019\left(x+1\right)=0\)

\(\Leftrightarrow\frac{x+1}{\sqrt{2020x-2019}+\sqrt{2019x-2020}}+2019\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(\frac{1}{\sqrt{2020x-2019}+\sqrt{2019x-2020}}+2019\right)=0\)

:)

Khách vãng lai đã xóa
phạm thị thục thủy
2 tháng 1 2020 lúc 14:42

https://olm.vn/thanhvien/chibiverycute là con chó

https://olm.vn/thanhvien/chibiverycute là con chó

https://olm.vn/thanhvien/chibiverycute là con chó

https://olm.vn/thanhvien/chibiverycute là con chó

https://olm.vn/thanhvien/chibiverycute là con chóhttps://olm.vn/thanhvien/chibiverycute là con chó

https://olm.vn/thanhvien/chibiverycute là con chóhttps://olm.vn/thanhvien/chibiverycute là con chóhttps://olm.vn/thanhvien/chibiverycute là con chóhttps://olm.vn/thanhvien/chibiverycute là con chóhttps://olm.vn/thanhvien/chibiverycute là con chóhttps://olm.vn/thanhvien/chibiverycute là con chóhttps://olm.vn/thanhvien/chibiverycute là con chóhttps://olm.vn/thanhvien/chibiverycute là con chóvhttps://olm.vn/thanhvien/chibiverycute là con chóhttps://olm.vn/thanhvien/chibiverycute là con chóhttps://olm.vn/thanhvien/chibiverycute là con chóhttps://olm.vn/thanhvien/chibiverycute là con chóhttps://olm.vn/thanhvien/chibiverycute là con chóhttps://olm.vn/thanhvien/chibiverycute là con chó

Khách vãng lai đã xóa
Người Vô Danh
Xem chi tiết
Nguyễn Hoàng Minh
9 tháng 11 2021 lúc 21:10

TK: Câu hỏi của Hà Phương Linh - Toán lớp 9 - Học trực tuyến OLM

Vũ Bùi Trung Hiếu
Xem chi tiết
Akai Haruma
2 tháng 1 2021 lúc 17:50

Đề sai. Nếu $x,y$ đều âm thì điều kiện $xy> 2020x+2020y$ được thỏa mãn nhưng hiển nhiên $x+y$ không thể lớn hơn $(\sqrt{2020}+\sqrt{2021})^2$

Quyết Tâm Chiến Thắng
Xem chi tiết
Nyatmax
1 tháng 10 2019 lúc 18:35

\(DK:x\ge\frac{2019}{2020}\)

\(\Leftrightarrow\left(2020x-2019-2\sqrt{2020x-2019}+1\right)+\left(x^2-2x+1\right)=0\)

\(\Leftrightarrow\left(\sqrt{2020x-2019}-1\right)^2+\left(x-1\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}\sqrt{2020x-2019}-1=0\\x-1=0\end{cases}}\)

\(\Leftrightarrow x=1\left(n\right)\)

Vay nghiem cua PT la \(x=1\)

Achana
Xem chi tiết
Nguyễn Ngọc Lộc
9 tháng 5 2021 lúc 9:23

ĐKXĐ : \(\left\{{}\begin{matrix}x>2019\\y>2020\\z>2021\end{matrix}\right.\)

Đặt \(\sqrt{x-2019}=a,......\)

Ta được PT : \(\dfrac{1-a}{a^2}+\dfrac{1-b}{b^2}+\dfrac{1-c}{c^2}+\dfrac{3}{4}=0\)

\(\Leftrightarrow\dfrac{1}{a^2}-\dfrac{1}{a}+\dfrac{1}{4}+\dfrac{1}{b^2}-\dfrac{1}{b}+\dfrac{1}{4}+\dfrac{1}{c^2}-\dfrac{1}{c}+\dfrac{1}{4}=0\)

\(\Leftrightarrow\left(\dfrac{1}{a}-\dfrac{1}{2}\right)^2+\left(\dfrac{1}{b}-\dfrac{1}{2}\right)^2+\left(\dfrac{1}{c}-\dfrac{1}{2}\right)^2=0\)

- Thấy : \(\left(\dfrac{1}{a}-\dfrac{1}{2}\right)^2\ge0,......\)

\(\Rightarrow\left(\dfrac{1}{a}-\dfrac{1}{2}\right)^2+\left(\dfrac{1}{b}-\dfrac{1}{2}\right)^2+\left(\dfrac{1}{c}-\dfrac{1}{2}\right)^2\ge0\)

- Dấu " = " xảy ra <=> \(\left\{{}\begin{matrix}\dfrac{1}{a}=\dfrac{1}{2}\\\dfrac{1}{b}=\dfrac{1}{2}\\\dfrac{1}{c}=\dfrac{1}{2}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a=2\\b=2\\c=2\end{matrix}\right.\)

- Thay lại a. b. c ta được : \(\left\{{}\begin{matrix}\sqrt{x-2019}=2\\\sqrt{y-2020}=2\\\sqrt{z-2021}=2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-2019=4\\y-2020=4\\z-2021=4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=2023\\y=2024\\z=2025\end{matrix}\right.\) ( TM )

Vậy ...

 

NTZ. Tử Thần
Xem chi tiết
Nguyễn Ngọc Lộc
9 tháng 7 2020 lúc 18:18

Ta có : \(x^2-2020x+2021=0\)

=> \(\Delta^,=b^{,2}-ac=\left(-1010\right)^2-2021=1018079>0\)

Nên phương trình có 2 nghiệm phân biệt .

Theo vi ét : \(\left\{{}\begin{matrix}x_1+x_2=2020\\x_1x_2=2021\end{matrix}\right.\)

Ta có : \(\frac{1}{x_1}+\frac{1}{x_2}=\frac{x_1+x_2}{x_1x_2}=\frac{2020}{2021}\)