Giải hệ phương trình:
\(\hept{\begin{cases}x^2+y^2=1\\\sqrt[2019]{x}-\sqrt[2019]{y}=\left(\sqrt[2020]{y}-\sqrt[2020]{x}\right)\left(xy+x+y+2021\right)\end{cases}}\)
Giải phương trình
\(\dfrac{1-\sqrt{x-2019}}{x-2019}+\dfrac{1-\sqrt{y-2020}}{y-2020}+\dfrac{1-\sqrt{z-2021}}{z-2021}+\dfrac{3}{4}=0\)
giải pt: \(\sqrt{x-2019}+\sqrt{2021-x}\)=(x-2020)2+2
cho 2 số thức dương thỏa mãn \(xy>2020x+2021y\)
chứng minh rằng \(x+y>\left(\sqrt{2020}+\sqrt{2021}\right)^2\)
giải phương trình :\(\sqrt{x^2+1-2x}+\sqrt{x^2+4x+4}=\sqrt{1+2020^2+\frac{2020^2}{2021^2}}+\frac{2020}{2021}\)
Tìm GTNN bt:A=\(\dfrac{2020x+2021\sqrt{1-x^2}+2022}{\sqrt{1-x^2}}\)
Giai phuong trinh:
\(x+y+z-6046=2\sqrt{x-2019}+4\sqrt{x-2020}+6\sqrt{x-2021}\)
Bài 1: Cho a, b thỏa mãn ab > 2020a + 2021b
Chứng minh rằng: a+b > \(\left(\sqrt{2020}+\sqrt{2021}\right)^2\)
Bài 2: Tìm x,y thỏa mãn \(\sqrt{x-3}+\sqrt{5-x}=y^2+2\sqrt{2019}.y+2021\)
Tính giá trị của biểu thức N=x^2019 +3x^2020-2x^2021 với x=\(\frac{\sqrt{\sqrt{5}+2}+\sqrt{\sqrt{5}-2}}{\sqrt{\sqrt{5}+1}}-\sqrt{3+2\sqrt{ }2}\)